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Traditional approaches

B Vertical Domain Selection

B Determine the vertical domain that content blocks belong to.

B Formulated as binary classification problems.
B Item Ranking in a Vertical Domain

B Determine the ranking of result in a certain vertical area.

B Solved by various L2R algorithms or modeled as sequential decision-making problems.
B Global Result Ranking

B Determine the ranking for content blocks to form a page.

B Solved by various L2R algorithms.



Motivation
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B How to develop an end-to-end model and jointly optimize the three subtasks?




Related Work

B BC+ISLTR+RPLTR
B A traditional pipeline for aggregated search framework.
B A two-layer MLP is used for vertical selection and learning-to-rank method (LTR) for item selection

and result presentation
B BC+Low-level RL+RPLTR
B Replace ISLTR with low-level RL method for item selection.

B NDCG

B Normalized Discounted Cumulative Gain

B Measure up relevance of the selected items to the given query.

B NDCG-IA

B Intent-aware NDCQG, an extension on NDCG.



Our HRL Approach

» Overall Framework

» High-level RL: Vertical Selector

» Low-level RL : Item Selector

» Self-supervised State Representation Learning



Overall Framework
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Vertical Selector MDP

® State S : Formulated as s} = f[q, or, h] which includes the query ¢, current option o7,

and the encoding of history options (og ... 07_1), and selected items by LSTM.
® Options O : A vertical domain chosen from candidate set X7.

® Transition Probability P : Feed oy into LSTM to guarantee the MDP property.

® Reward Signal R: r* = aAFI + BANDCG—IA+(1—a—B)ANDCG



Item Selector MDP

® State S : Formulated as s{ = f[q, or, Z 5 t» Xor ¢ ], which includes query q. the options or chosen

X

by high-level RL, partial ranked result Z;_ ; at time t, remaining candidate item set X, at time t.
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Item Selector MDP

® Action A : Choose the item x(a,.. ;) from the candidate set X and rank it

onto the t-th position.
® State Transition P : Add the chosen item x(a,,.+) from candidate set X ; to

the ranked list Z7_ ;. The new ranked list and the candidate set are fed into the

state representation module to generate the following state S(l)T,t+1o

® Reward Signal R: réT’t = ANDCG



Self-supervised State Representation Learning

B Use the auto-encoder structure to train the State Representation Module
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Self-supervised State Representation Learning

B Alternating Training : State Representation module and RL are trained
alternatively and updated according to their individual loss function.

® Hybrid loss function : Sum up the loss function of auto-encoder of State
Representation module with that of high-level RL as the unified loss function.

Both modules are updated according to the hybrid loss function:
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Experiments
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Baselines

VS tasks IR tasks RP tasks
BC RN LR REINFORCE RN LR

BCvs + RNir + RNrp v N \
BCys + RNir + LRgp V v N
BCvs + LRir + RNgp v \ N
BCvs + LRir + LRgp \ \ \
BCvs + REINjg + RNgrp v N \
BCvs + REINik + LRge v v N

BC = Binary Classifier; RN = RankNet; LR = LambdaRank



Results

Method NDCG@10 NDCG@20 NDCG-IA@10 NDCG-IA@20
BC + ISRankNet + RPRankNet 26.47 26.18 5.78 6.76
BC + ISLambdaRank + RPLambdaRank 29.16 27.39 6.48 7.07
High-level RL + ISRankNet 20.14 24.72 4.75 6.84
High-level RL + ISLambdaRank 21.20 25.31 4.97 6.72
BC + Low-level RL + RPRankNet 23.00 24.62 4.94 6.46
BC + Low-level RL + RPLambdaRank 22.91 22.12 4.85 5.58
HRL 25.38 25.64 6.34 8.20

HRL(without state representation module) 22.56

24.10

4.99

7.10

Table 3: Performance comparison with baseline on dataset FedWeb13

Method NDCG@10 NDCG@20 NDCG-IA@10 NDCG-IA@20
BC + ISRankNet + RPRankNet 27.89 30.32 7.28 8.95

BC + ISLambdaRank + RPLambdaRank 34.73 33.37 9.09 10.01
High-level RL + ISRankNet 32.83 34.77 8.30 10.19
High-level RL + ISLambdaRank 31.36 34.54 7.81 10.03

BC + Low-level RL + RPRankNet 26.75 29.79 6.32 8.39

BC + Low-level RL + RPLambdaRank 29.54 30.42 6.78 8.21

HRL 40.77 38.69 10.83 12.94

HRL(without state representation module) 35.53

35.35

8.70

10.77

Table 4: Performance comparison with baseline on dataset FedWeb14



Results

Method NDCG@10 NDCG@20 NDCG-TA@10 NDCG-IA@20
HRL(without self-supervised learning) 24.26 24.11 5.90 7.35
HRL(alternative training) 24.36 24.62 5.90 7.51
HRL(hybrid loss training, ,Brep =0.1) 23.28 23.54 5.30 6.79
HRL(hybrid loss training, frep = 1) 25.38 25.64 6.34 8.20
HRL(hybrid loss training, frep = 10) 23.36 24.05 5.80 7.55

Table 5: Performance comparison between different training methods on dataset FedWeb13

Method NDCG@10 NDCG@20 NDCG-IA@10 NDCG-IA@20
HRL(without self-supervised learning) 36.41 35.73 9.50 11.63
HRL(alternative training) 38.07 36.48 9.99 11.94
HRL(hybrid loss training, ,Brep =0.1) 40.77 38.69 10.83 12.94
HRL(hybrid loss training, frep = 1) 37.16 36.23 9.93 11.97
HRL(hybrid loss training, Sy, = 10) 37.62 36.46 9.90 11.98

Table 6: Performance comparison between different training methods on dataset FedWeb14



Recap

® We model the aggregated search problem in a novel hierarchical end-
to-end manner, the high level for vertical selection and result
presentation, while the low level for item selection.

B  We introduce hierarchical reinforcement learning to solve this problem.
In addition, self-supervised learning based state representation
methods are used to strengthen the association among different
subtasks.
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