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News Feed

Autonomous Driving

Search Engine Food Recommendation Entertainment

Online Shopping
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Interactive systems are everywhere



INTERACTIVE SYSTEMS SCHEMATIC
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Context 𝒙 comes to the system

𝑥: user information, query information, etc.
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Context 𝒙 comes to the system

System recommends action 𝒂

𝑥: user information, query information, etc.
𝑎: ranking, recommended music/news, etc.



INTERACTIVE SYSTEMS SCHEMATIC
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Context 𝒙 comes to the system

System recommends action 𝒂

User responds with reward 𝒓(𝒙, 𝒂)

𝑥: user information, query information, etc.
𝑎: ranking, recommended music/news, etc.
𝑟: click, dwell time, transactions, etc.



INTERACTIVE SYSTEMS SCHEMATIC
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𝑥: user information, query information, etc.
𝑎: ranking, recommended music/news, etc.
𝑟: click, dwell time, transactions, etc.

𝒟 = 𝑥! , 𝑎! , 𝑟! !"#$

Logged Dataset



INTERACTIVE SYSTEMS SCHEMATIC
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We collect user interactions for: 

- Evaluating the system performance
- Learning an improved system



EXAMPLE: NEWS RECOMMENDER
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Context 𝒙:

• User information/ Visiting history

Action 𝒂:
• News article featured in the main 

panel.

Reward 𝒓(𝒙, 𝒂):
• Reading time



CONTEXTUAL BANDIT PROTOCOL
Repeated Interaction:

Context 𝒙 i.i.d follows some distribution 𝑃 𝑥 .
(user information, visiting history etc.)

System chooses action 𝒂 according to some policy
𝜋(𝑎|𝑥).
(recommended music/news, ranking, etc.)

The user provides feedback 𝒓(𝒙, 𝒂) to the presented
action.
(click, dwell time, likes/shares, etc.)
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Given a new system, how is the performance of it?

How do we improve and learn new systems?

Policy Evaluation

Policy Learning



POLICY EVALUATION

➤ Definition [Utility of Policy]: 

The expected reward/utility of a policy 𝜋 is:

𝑉 𝜋 = 𝔼!∼#(!)𝔼&∼'(&|!)𝔼)∼#()|!,&)[𝑟]
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ONLINE EVALUATION: A/B TESTING

➤ Evaluation of Policy 𝝅:
➤ Deploy system 𝜋 online.
➤ For user 𝑥 ∼ 𝑃(𝑥), draws action 𝑎 ∼ 𝜋(⋅ |𝑥), receives feedback 𝑟 𝑥, 𝑎 .
➤ Collect dataset in the format 𝒟 = {𝑥!, 𝑎!, 𝑟!}!"#$ .
➤ Construct estimate of the policy utility:

!𝑉 𝜋 =
1
𝑛'!"#

$
𝑟!
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ONLINE EVALUATION: A/B TESTING

Draw 𝒟# from 𝜋# Evaluate 5𝑉(𝜋#)

Draw 𝒟|ℋ| from 𝜋|ℋ| Evaluate 5𝑉(𝜋|ℋ|)
13

'𝑉(𝜋!)

Draw 𝒟, from 𝜋, Evaluate 5𝑉(𝜋,) '𝑉(𝜋")

Draw 𝒟- from 𝜋- Evaluate 5𝑉(𝜋-) '𝑉(𝜋#)

'𝑉(𝜋|ℋ|)



MOVE ONLINE EVALUATION TO OFFLINE
➤ Problems with online A/B Testing:

➤ Long turnaround time.
➤ High engineering cost.
➤ Limited number of policies being evaluated.
➤ High risk of deploying bad policy.
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MOVE ONLINE EVALUATION TO OFFLINE
➤ Problems with online A/B Testing:

➤ Long turnaround time.
➤ High engineering cost.
➤ Limited number of policies being evaluated.
➤ High risk of deploying bad policy.

➤ Idea: Move online to offline:

logged data '𝑉(𝜋")

'𝑉(𝜋#)

'𝑉(𝜋&)

'𝑉(𝜋')

'𝑉(𝜋()

'𝑉(𝜋))

'𝑉(𝜋 ℋ *!)

'𝑉(𝜋 ℋ )
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GOALS
Provide statistically and computationally efficient way to 
evaluate and optimize interactive systems by exploiting 
logs of past user interactions. 
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1. Off-policy Evaluation
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GOALS
Provide statistically and computationally efficient way to 
evaluate and optimize interactive systems by exploiting 
logs of past user interactions. Specifically:

1. Off-policy Evaluation
2. Off-policy Model Selection
3. Off-policy Learning
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TALK OUTLINE
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Off-policy Evaluation

Introduction and Background.

Counterfactual family of estimators. 
[ICML, 2019]

Optimization-based framework for 
estimator design. 

[ICML, 2020]

Off-policy Model Selection
SLOPE: A model selection 

procedure in OPE. 
[ICML, 2020]

Off-policy Learning
Multiple logging policies.

[CausalML, 2018]

Deficient support data.
[KDD, 2020]
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Off-policy Evaluation

Introduction and Background.

Counterfactual family of estimators. 
[ICML, 2019]

Optimization-based framework for 
estimator design. 

[ICML, 2020]

Off-policy Model Selection
SLOPE: A model selection 

procedure in OPE. 
[ICML, 2020]

Off-policy Learning
Multiple logging policies

[CausalML, 2018]

Deficient support data
[KDD, 2020]



OFF-POLICY EVALUATION
➤ Goal:

Find an estimate 7𝑽 𝝅 to measure the expected reward of a new policy 𝜋

𝑉 𝜋 = 𝔼!∼#(!)𝔼&∼'(&|!)𝔼)∼#()|!,&)[𝑟]

Using the logged data from a different known logging policy 𝜇

𝒟 = 𝑥+ , 𝑎+ , 𝜇 𝑎+ 𝑥+ , 𝑟+ +,-
.

➤ Quality of the estimate 3𝑉(𝜋): 

𝑀𝑆𝐸 5𝑉 𝜋 = 𝔼 5𝑉 𝜋 − 𝑉 𝜋
,
= 𝐵𝑖𝑎𝑠 5𝑉 𝜋

,
+ 𝑉𝑎𝑟 5𝑉 𝜋

22



Challenges

Bias data: selection-bias due to the logging policy.

Partial information data: only observe the reward for recommended action.

23



OFF-POLICY EVALUATION: EXISTING APPROACHES

➤ Model the bias: Inverse propensity scores (IPS).
➤ A weighted average of the data according to importance

sampling weights.

3𝑉/#0 𝜋 =
1
𝑛
6
+,-

.

𝑤 𝑥+ , 𝑎+ 𝑟+

24[Horitz & Thompson, 1952; Strehl et al., 2011]
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OFF-POLICY EVALUATION: EXISTING APPROACHES

➤ Model the bias: Inverse propensity scores (IPS).
➤ A weighted average of the data according to importance

sampling weights.

3𝑉/#0 𝜋 =
1
𝑛
6
+,-

.

𝑤 𝑥+ , 𝑎+ 𝑟+

Unbiased estimator under full support.
High variance when logging policy and target policy differ a lot.

𝑤 𝑥, 𝑎 =
𝜋(𝑎|𝑥)
𝜇(𝑎|𝑥)

26[Horitz & Thompson, 1952; Strehl et al., 2011]



OFF-POLICY EVALUATION: EXISTING APPROACHES

➤ Model the world: Direct Model (DM).
➤ Use logged data 𝒟 = 𝑥+ , 𝑎+ , 𝑟+ +,-

. to estimate reward predictor
8𝛿 𝑥, 𝑎 , then using this estimate to do the imputation.

3𝑉12 𝜋 =
1
𝑛
6
+,-

.

6
&

𝜋 𝑎 𝑥+ 8𝛿(𝑥+ , 𝑎)

27[Dudik et al., 2011]



OFF-POLICY EVALUATION: EXISTING APPROACHES

➤ Model the world: Direct Model (DM).
➤ Use logged data 𝒟 = 𝑥+ , 𝑎+ , 𝑟+ +,-

. to estimate reward predictor
8𝛿 𝑥, 𝑎 , then using this estimate to do the imputation.

3𝑉12 𝜋 =
1
𝑛
6
+,-

.

6
&

𝜋 𝑎 𝑥+ 8𝛿(𝑥+ , 𝑎)

Low variance.
Typically has high bias due to model misspecification.

28[Dudik et al., 2011]



OFF-POLICY EVALUATION: EXISTING APPROACHES

➤ Doubly Robust Estimator
➤ Use Direct Model as a baseline, also leverages IPS weighting to 

measure the departure from the baseline.

3𝑉13 𝜋 = 3𝑉12 𝜋 +
1
𝑛
6
+,-

.

𝑤 𝑥+ , 𝑎+ (𝑟+− 8𝛿(𝑥+ , 𝑎+))

29[Robins & Rotnitzky, 1995; Dudik et al., 2011]
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OFF-POLICY EVALUATION: EXISTING APPROACHES

➤ Doubly Robust Estimator
➤ Use Direct Model as a baseline, also leverages IPS weighting to 

measure the departure from the baseline.

3𝑉13 𝜋 = 3𝑉12 𝜋 +
1
𝑛
6
+,-

.

𝑤 𝑥+ , 𝑎+ (𝑟+− 8𝛿(𝑥+ , 𝑎+))

Unbiased estimator, asymptotically optimal under mild conditions.
Variance improvement over IPS, but still suffer from high variance.

31[Robins & Rotnitzky, 1995; Dudik et al., 2011]
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DM IPS

DR
Bias

Variance
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DM IPS

DR
Bias

Variance

1.How do we quantify estimators in between?

2.What is the estimator in the sweet spot?
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Off-policy Evaluation

Introduction and Background.

Counterfactual family of estimators. 
[ICML, 2019]

Optimization-based framework for 
estimator design. 

[ICML, 2020]

Off-policy Model Selection
SLOPE: A model selection 

procedure in OPE. 
[ICML, 2020]

Off-policy Learning
Multiple logging policies

[CausalML, 2018]

Deficient support data
[KDD, 2020]



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet 𝓦 = (𝒘𝜶, 𝒘𝜷, 𝒘𝜸) of weighting functions:

5𝑉1 𝜋 =
1
𝑛
I
!"#

$

I
2∈4

𝜋(𝑎|𝑥!)𝒘𝒊𝒂
𝜶 𝛼!2 +

1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝒘𝒊
𝜷𝛽! +

1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝒘𝒊
𝜸𝛾!

Su,Y.*, Wang.L,*, Santacatterina, M., and Joachims,T. CAB: Continuous adaptive blending estimator for policy evaluation and learning. ICML 2019.
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INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet 𝓦 = (𝒘𝜶, 𝒘𝜷, 𝒘𝜸) of weighting functions:

5𝑉1 𝜋 =
1
𝑛
I
!"#

$

I
2∈4

𝜋(𝑎|𝑥!)𝒘𝒊𝒂
𝜶 𝛼!2 +

1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝒘𝒊
𝜷𝛽! +

1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝒘𝒊
𝜸𝛾!

➤ First Component (Model part): 𝜶𝒊𝒂 = 7𝜹(𝒙𝒊, 𝒂).

➤ “Model the world” by having a reward estimator for all (𝑥, 𝑎) pairs.

➤ The estimator that purely relies on this is DM, which has weights 𝑤 = (1,0,0).

➤ Induce high bias, but typically low variance.

36



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet 𝓦 = (𝒘𝜶, 𝒘𝜷, 𝒘𝜸) of weighting functions:

5𝑉1 𝜋 =
1
𝑛
I
!"#

$

I
2∈4

𝜋(𝑎|𝑥!)𝑤!27𝛼!2 +
1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝒘𝒊
𝜷𝛽! +

1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝑤!
8𝛾!

➤ Second Component (Weighting part): 𝜷𝒊: = 𝜷 𝒙𝒊, 𝒂𝒊 = 𝒓(𝒙𝒊,𝒂𝒊)
𝝁(𝒂𝒊|𝒙𝒊)

➤ “Model the bias” by correcting the probability mismatch.

➤ The estimator that purely relies on this is IPS, which put weights 𝑤 = (0,1,0)

➤ Induce high variance, but unbiased under mild conditions.
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INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet 𝓦 = (𝒘𝜶, 𝒘𝜷, 𝒘𝜸) of weighting functions:

5𝑉1 𝜋 =
1
𝑛
I
!"#

$

I
2∈4

𝜋(𝑎|𝑥!)𝑤!27𝛼!2 +
1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝑤!
=𝛽! +

1
𝑛
I
!"#

$

𝜋 𝑎! 𝑥! 𝒘𝒊
𝜸𝛾!

➤ Third Component (Control Variate): 𝜸𝒊 ≔ 𝜸 𝒙𝒊, 𝒂𝒊 =
>𝜹 (𝒙𝒊,𝒂𝒊)
𝝁(𝒂𝒊|𝒙𝒊)

➤ Used as control variate for variance reduction, example: DR.

➤ This part could not be used in some partial information setting, such as 

Learning to Rank.
38



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet 𝓦 = (𝒘𝜶, 𝒘𝜷, 𝒘𝜸) of weighting functions:

5𝑉1 𝜋 =
1
𝑛
I
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$
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3𝑉4 𝜋 = 𝒘𝒊𝒂
𝜶 Model Part + 𝒘𝒊

𝜷 Weighting Part + 𝒘𝒊
𝜸 Control Variate



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Estimator 𝒘𝒊𝒂
𝜶 (Model) 𝒘𝒊

𝜷 (Weighting) 𝒘𝒊
𝜸 (Control 
Variate)

DM 1 0 0

IPS 0 1 0

DR 1 1 -1

cIPS 0
min{

𝑀𝜇 𝑎0 𝑥0
𝜋 𝑎0 𝑥0

, 1}
0

MAGIC/SB 1 − 𝜏 𝜏 0

SWITCH
𝕝{
𝜋 𝑎 𝑥0
𝜇 𝑎 𝑥0)

> 𝑀} 𝕝{
𝜋 𝑎0 𝑥0
𝜇 𝑎0 𝑥0)

≤ 𝑀}
0

40



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Estimator 𝒘𝒊𝒂
𝜶 (Model) 𝒘𝒊

𝜷 (Weighting) 𝒘𝒊
𝜸 (Control 
Variate)

DM 1 0 0

IPS 0 1 0

DR 1 1 -1

cIPS 0
min{

𝑀𝜇 𝑎0 𝑥0
𝜋 𝑎0 𝑥0

, 1}
0

MAGIC/SB 1 − 𝜏 𝜏 0

SWITCH
𝕝{
𝜋 𝑎 𝑥0
𝜇 𝑎 𝑥0)

> 𝑀} 𝕝{
𝜋 𝑎0 𝑥0
𝜇 𝑎0 𝑥0)

≤ 𝑀}
0

SB(Static Blending)
[Thomas & Brunskill, 2016]

Static weighting and does not 
depend on importance weights.

SWITCH
[Wang, et.al., 2017]

Hard switching makes it not 
differentiable w.r.t. parameter of 
policy and could not be used in 
gradient-based learning algorithms.
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DESIRABLE PROPERTIES

➤ Applicable for a wide range of settings, like LTR, need to make 
control variate term to be 0.
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DESIRABLE PROPERTIES

➤ Applicable for a wide range of settings, like LTR, need to make 
control variate term to be 0.

➤ Low MSE: data dependent weights that allow an instance 
dependent trade-off between bias and variance.
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DESIRABLE PROPERTIES

➤ Applicable for a wide range of settings, like LTR, need to make 
control variate term to be 0.

➤ Low MSE: data dependent weights that allow an instance 
dependent trade-off between bias and variance.

➤ Sub-differentiable for gradient based learning.

44



CONTINUOUS ADAPTIVE BLENDING (CAB)

5𝑉P4Q 𝜋 = 5𝑉1 𝜋 𝑤𝑖𝑡ℎ

𝑤!27 = 1 −min{𝑀
𝜇 𝑎 𝑥!
𝜋 𝑎 𝑥!

, 1}

𝒘𝒊
𝜷 = min{𝑀

𝜇 𝑎! 𝑥!
𝜋 𝑎! 𝑥!

, 1}

𝒘𝒊
𝜸 = 0

CAB is a specific estimator in the interpolated counterfactual estimator family with:

45

5𝑉P4Q 𝜋 = 1 −min 𝑀 R 𝑎 𝑥!
S 𝑎 𝑥!

, 1 ×Model Part + min 𝑀 R 𝑎! 𝑥!
S 𝑎! 𝑥!

, 1 ×Weighting Part 



PROPERTIES OF CAB
➤ Can be substantially less biased than clipped 

IPS and DM.

➤ While having low variance compared to IPS 
and DR.

➤ Subdifferentiable and capable of gradient 
based learning: POEM (Swaminathan & 
Joachims, 2015a), BanditNet (Joachims et.al., 
2018)

➤ Unlike DR, can be used in off-policy Learning 
to Rank (LTR) algorithms. (Joachims et.al., 
2017) 46

Estim
ator

𝒘𝒊𝒂
𝜶 (Model) 𝒘𝒊

𝜷 (Weighting) 𝒘𝒊
𝜸

DM 1 0 0

cIPS 0 min{
𝑀𝜇 𝑎! 𝑥!
𝜋 𝑎! 𝑥!

, 1} 0

CAB
1 − min 𝑀

𝜇 𝑎 𝑥!
𝜋 𝑎 𝑥!

, 1 min 𝑀
𝜇 𝑎! 𝑥!
𝜋 𝑎! 𝑥!

, 1
0



PROPERTIES OF CAB
➤ Can be substantially less biased than clipped 

IPS and DM.

➤ While having low variance compared to IPS 
and DR.

➤ Subdifferentiable and capable of gradient 
based learning: POEM (Swaminathan & 
Joachims, 2015a), BanditNet (Joachims et.al., 
2018)

➤ Unlike DR, can be used in off-policy Learning 
to Rank (LTR) algorithms. (Joachims et.al., 
2017) 47

Estim
ator

𝒘𝒊𝒂
𝜶 (Model) 𝒘𝒊

𝜷 (Weighting) 𝒘𝒊
𝜸

IPS 0 1 0

DR 1 1 -1

CAB
1 − min 𝑀

𝜇 𝑎 𝑥!
𝜋 𝑎 𝑥!

, 1 min 𝑀
𝜇 𝑎! 𝑥!
𝜋 𝑎! 𝑥!

, 1
0



PROPERTIES OF CAB
➤ Can be substantially less biased than clipped 

IPS and DM.

➤ While having low variance compared to IPS 
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➤ Can be substantially less biased than clipped 

IPS and DM.

➤ While having low variance compared to IPS 
and DR.

➤ Subdifferentiable and capable of gradient 
based learning: POEM (Swaminathan & 
Joachims, 2015a), BanditNet (Joachims et.al., 
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EXPERIMENTS: SETTINGS

➤ Batch Learning from Bandit Feedback.
➤ Datasets: UCI multi-class classification, bandit conversion.
➤ Model: Logistic Regression
➤ Policy: Softmax Policy

➤ Learning to Rank.
➤ Datasets: Yahoo LTR!
➤ Model: Gradient Boosted Decision Tree
➤ Policy: SVM-Rank
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EXPERIMENTS: UCI DATASET
➤ Question 1: Can CAB achieve improved estimation by trading bias-

variance through M?

Performance of CAB: satImage
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6𝑉"#$ 𝜋 = 1 −min 𝑴 % 𝑎 𝑥!
& 𝑎 𝑥!

, 1 ×Model Part + min 𝑴 % 𝑎! 𝑥!
& 𝑎! 𝑥!

, 1 ×Weighting Part 
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6𝑉"#$ 𝜋 = 1 −min 𝑴 % 𝑎 𝑥!
& 𝑎 𝑥!
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EXPERIMENTS: YAHOO LTR!
➤ Question 1: Can CAB achieve improved estimation by trading bias-

variance through M?

Performance of CAB: Yahoo LTR!
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6𝑉"#$ 𝜋 = 1 −min 𝑴 % 𝑎 𝑥!
& 𝑎 𝑥!

, 1 ×Model Part + min 𝑴 % 𝑎! 𝑥!
& 𝑎! 𝑥!

, 1 ×Weighting Part 



EXPERIMENTS

➤ Question 2: How does CAB compared with other estimators?
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LESSONS LEARNT

A family of estimators 

Flexible bias variance tradeoff

55

CAB (smooth weight clipping)

slightly higher bias 
+ 

substantially lower variance
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A specific weight design → CAB

Is there any systematic way to design the 
weights for better bias-variance tradeoff? 



TALK OUTLINE

57

Off-policy Evaluation

Introduction and Background.

Counterfactual family of estimators. 
[ICML, 2019]

Optimization-based framework for 
estimator design. 

[ICML, 2020]

Off-policy Model Selection
SLOPE: A model selection 

procedure in OPE. 
[ICML, 2020]

Off-policy Learning
Multiple logging policies

[CausalML, 2018]

Deficient support data
[KDD, 2020]



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE (DRS)

Su.Y, Dimakopoulou.M, Krishnamurthy.A, and Dudík.M. Doubly robust off-policy evaluation with shrinkage. ICML, 2020.
58

3𝑉13 𝜋 = 3𝑉12 𝜋 +
1
𝑛
6
+,-

.

𝑤 𝑥+ , 𝑎+ (𝑟+− 8𝛿(𝑥+ , 𝑎+))

DR is asymptotically optimal.

However, it still suffers from the large variance due to    
utilizing the importance sampling weight.



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE (DRS)

Replace the original weight 𝒘 𝒙, 𝒂 by a shrinkage version =𝒘 𝒙, 𝒂 .  

3𝑉130 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. =𝑤 𝑥+ , 𝑎+ (𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋

59

3𝑉13 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. 𝑤 𝑥+ , 𝑎+ (𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋

0 ≤ =𝑤 𝑥+ , 𝑎+ ≤ 𝑤(𝑥+ , 𝑎+)



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE

Replace the original weight 𝒘 𝒙, 𝒂 by a shrinkage version =𝒘 𝒙, 𝒂 .  

3𝑉130 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. =𝑤 𝑥+ , 𝑎+ (𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋

Which form of shrinkage should we use?

Which one should we use for our specific reward predictor?

60



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE

Our approach: 

Directly finding the optimal weights by 
minimizing an upper bound of the MSE

61



APPROACH I: BEING PESSIMISTIC

Assume sup
!,&

𝑟 − 8𝛿 𝑥, 𝑎 ≤ 1

➤ Bias: 𝐵𝑖𝑎𝑠 =𝑤 ≤ 𝑈𝐵 𝐵𝑖𝑎𝑠 = 𝔼:[|=𝑤 𝑥, 𝑎 − 𝑤(𝑥, 𝑎)|]

➤ Variance: 𝑉𝑎𝑟 =𝑤 ≲ 𝑈𝐵 𝑉𝑎𝑟 = -
.
𝔼:[=𝑤 𝑥, 𝑎 ;]
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APPROACH I: BEING PESSIMISTIC

Assume sup
!,&

𝑟 − 8𝛿 𝑥, 𝑎 ≤ 1

➤ Bias: 𝐵𝑖𝑎𝑠 =𝑤 ≤ 𝑈𝐵 𝐵𝑖𝑎𝑠 = 𝔼:[|=𝑤 𝑥, 𝑎 − 𝑤(𝑥, 𝑎)|]

➤ Variance: 𝑉𝑎𝑟 =𝑤 ≲ 𝑈𝐵 𝑉𝑎𝑟 = -
.
𝔼:[=𝑤 𝑥, 𝑎 ;]

➤ The optimal weights can be obtained by minimizing:

𝑈𝐵(𝐵𝑖𝑎𝑠) + 𝜆 ⋅ 𝑈𝐵(𝑉𝑎𝑟)
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APPROACH I: BEING PESSIMISTIC

Assume sup
!,&

𝑟 − 8𝛿 𝑥, 𝑎 ≤ 1

➤ Bias: 𝐵𝑖𝑎𝑠 =𝑤 ≤ 𝑈𝐵 𝐵𝑖𝑎𝑠 = 𝔼:[|=𝑤 𝑥, 𝑎 − 𝑤(𝑥, 𝑎)|]

➤ Variance: 𝑉𝑎𝑟 =𝑤 ≲ 𝑈𝐵 𝑉𝑎𝑟 = -
.
𝔼:[=𝑤 𝑥, 𝑎 ;]

➤ The optimal weights can be obtained by minimizing:

𝑈𝐵(𝐵𝑖𝑎𝑠) + 𝜆 ⋅ 𝑈𝐵(𝑉𝑎𝑟)

➤ Solution: =𝑤 𝑥, 𝑎 = min{𝜆, 𝑤(𝑥, 𝑎)} Clipping Estimator
64



APPROACH II: BEING OPTIMISTIC

Typically, the reward estimator 8𝛿 𝑥, 𝑎 is trained to minimize the
weighted square loss based on some weighting function 𝑧 𝑥, 𝑎 :

Popular choices include 𝑧 = 1, 𝑧 = 𝑤 𝑥, 𝑎 , 𝑧 = 𝑤 𝑥, 𝑎 ;

𝐿( 8𝛿) =
1
𝑛
6
+,-

.

𝑧 𝑥+ , 𝑎+ 𝑟+ − 8𝛿 𝑥+ , 𝑎+
;
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APPROACH II: BEING OPTIMISTIC

➤ Bias: 𝐵𝑖𝑎𝑠; =𝑤 ≤ 𝔼:[ -
< !,&

=𝑤 𝑥, 𝑎 − 𝑤(𝑥, 𝑎) ;]𝐿( 8𝛿)

➤ Variance: 𝑉𝑎𝑟 =𝑤 ≲ 𝔼:[
4 !,& !

< !,&
=𝑤 𝑥, 𝑎 ;] 𝐿( 8𝛿)

➤ Using similar trick to minimize an upper bound of MSE.

➤ Solution:  S𝒘 𝒙, 𝒂 = 𝝀
𝝀>𝒘 𝒙,𝒂 𝟐𝒘(𝒙, 𝒂) Shrinkage Estimator
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3𝑉130AB 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. min{𝜆, 𝑤(𝑥, 𝑎)}(𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋

3𝑉130AC 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. 𝝀

𝝀>𝒘 𝒙,𝒂 𝟐𝒘(𝒙, 𝒂) (𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋

DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE

➤ Interpolating between DM and DR:

- 𝜆 = 0 → &𝑉!" 𝜋 , small variance, large bias
- 𝜆 = ∞ → &𝑉!# 𝜋 , large variance, small bias



EMPIRICAL EVALUATION

For non-combinatorial bandit, we perform 108 settings:

- 9 UCI multi-class classification datasets

- 6 different logging policies

- 2 reward conditions: deterministic reward and stochastic reward

68



EMPIRICAL EVALUATION

➤ Ablation Studies for DR with shrinkage.

- evaluating different reward predictors: 𝑧 = 1,𝑤 𝑥, 𝑎 , 𝑤 𝑥, 𝑎 ;.

- evaluating the optimistic and pessimistic shrinkage types. 
69

3𝑉130 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. =𝑤 𝑥+ , 𝑎+ (𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋

𝐿( Z𝛿) =
1
𝑛
I
!"#

$

𝑧 𝑥!, 𝑎! 𝑟! − Z𝛿 𝑥!, 𝑎!
,



EMPIRICAL EVALUATION

70

Do we need all different reward predictors?

How often across 108 

conditions is each of 
the reward predictor 
the best?

DM

DR

DR-
shrinkage

24

11

27

6

8

15

4

4

22

2

10

2

43

6

34

29

69

8

𝒛 = 𝟏 𝒛 = 𝒘 𝒛 = 𝒘𝟐 tie



EMPIRICAL EVALUATION
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55

55

58

23

24

22

30

29

28𝒛 = 𝟏

𝒛 = 𝒘

𝒛 = 𝒘𝟐

Pessimistic wins Tie Optimistic wins

Do we need both pessimistic shrinkage and optimistic shrinkage?

How often across 108 

conditions is each of 
them better in DR 
with shrinkage?



EMPIRICAL EVALUATION

Evaluation Performance Learning Performance
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LESSONS LEARNT

Instead of manually constructing 
estimators, there is an optimization-

based framework to design 
estimators.

73

Different reward predictors and 
weight shrinkage types perform 

well in different settings.
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How do we select the hyper-parameters in OPE?

5𝑉P4Q 𝜋 = 1 −min 𝑀 R 𝑎 𝑥!
S 𝑎 𝑥!

, 1 ×Model Part + min 𝑀 R 𝑎! 𝑥!
S 𝑎! 𝑥!

, 1 ×Weighting Part 

3𝑉130AB 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. min{𝜆, 𝑤(𝑥, 𝑎)}(𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋

3𝑉130AC 𝜋, =𝑤, 8𝛿 = -
.
∑+,-. 𝝀

𝝀>𝒘 𝒙,𝒂 𝟐𝒘(𝒙, 𝒂) (𝑟+− 8𝛿(𝑥+ , 𝑎+)) + 3𝑉12 𝜋



TALK OUTLINE

75

Off-policy Evaluation

Introduction and Background.

Counterfactual family of estimators. 
[ICML, 2019]

Optimization-based framework for 
estimator design. 

[ICML, 2020]

Off-policy Model Selection
SLOPE: A model selection 

procedure in OPE. 
[ICML, 2020]

Off-policy Learning
Multiple logging policies

[CausalML, 2018]

Deficient support data
[KDD, 2020]



76

Off-policy Model Selection:  

Among a family of off-policy estimates !𝑽(𝜋), 

selects the one with highest evaluation accuracy.

OFF POLICY MODEL SELECTION



OFF POLICY MODEL SELECTION: SLOPE

Su.Y, Srinath.P, Krishnamurthy.A, Adaptive Estimator Selection for Off-Policy Evaluation, ICML 2020
77

Bias
Variance

𝐼G = [ 8𝜃+ − 2𝐶𝑁𝐹 𝑖 , 8𝜃+ + 2𝐶𝑁𝐹 𝑖 ]

Ordering Building CIs



OFF POLICY MODEL SELECTION: SLOPE

Su.Y, Srinath.P, Krishnamurthy.A, Adaptive Estimator Selection for Off-Policy Evaluation, ICML 2020
78

Index Selection

̂𝚤 ≔ max{𝑖 ∈ 𝑀 : ∩G,-2 𝐼G ≠ ∅}

Performance



OFF POLICY LEARNING

79

Off-policy Learning:  

Learn an optimal policy 𝝅∗ in some hypothesis space Π

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 S∈V 𝑉(𝜋)

Tool: ERM based on an OPE estimate

b𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 S∈V 7𝑽(𝝅)



TALK OUTLINE
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Off-policy Evaluation

Introduction and Background.

Counterfactual family of estimators. 
[ICML, 2019]

Optimization-based framework for 
estimator design. 

[ICML, 2020]

Off-policy Model Selection
SLOPE: A model selection 

procedure in OPE. 
[ICML, 2020]

Off-policy Learning
Multiple logging policies

[CausalML, 2018]

Deficient support data
[KDD, 2020]



OFF POLICY LEARNING: MULTIPLE POLICIES

Su.Y, Agarwal.A, Joachims.T, Learning from Logged Bandit Feedback of Multiple Loggers, CausalML 2018
81

logged data 
𝓓𝟏 from 𝛑𝟏

logged data 
𝓓𝐤 from 𝛑𝐤

logged data 
𝓓𝟐 from 𝛑𝟐

Training logs are collected under 
multiple policies.

Naively using IPS in learning will give 
sub-optimal results.

Utilize a weighted estimator, to track 
the divergence between the learned 
policy and various logging policies.
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Off-policy Evaluation

Introduction and Background.

Counterfactual family of estimators. 
[ICML, 2019]

Optimization-based framework for 
estimator design. 

[ICML, 2020]

Off-policy Model Selection
SLOPE: A model selection 

procedure in OPE. 
[ICML, 2020]

Off-policy Learning
Multiple logging policies

[CausalML, 2018]

Deficient support data
[KDD, 2020]



OFF POLICY LEARNING: DEFICIENT SUPPORT DATA

Sachdeva.N*, Su.Y*, Joachims.T, Off-policy Bandits with Deficient Support. KDD, 2020 
83

Effectiveness of IPS relies on the crucial 
full support assumption 

The logging policy 𝜇 is said to have 
full support for 𝜋:

𝜇 𝑎 𝑥 > 0 whenever 𝜋 𝑎 𝑥 > 0
𝜇

𝜋



OFF POLICY LEARNING: DEFICIENT SUPPORT DATA

Sachdeva.N*, Su.Y*, Joachims.T, Off-policy Bandits with Deficient Support. KDD, 2020 
84

The logging policy needs to assign 
non-zero probability to every action 𝒂

for every context 𝑥 !   

We propose three efficient approaches 
to overcome the support deficient issue 

by restricting action space, 
policy space 

and reward extrapolation.
𝜇

𝜋



Beyond off-policy evaluation and learning …

85

Fairness

Diversity

Robustness

Privacy

Societal 
Roles

...



MULTI-SIDED MARKET PLATFORM

86

Traditional Recommender Systems Multi-sided Market Platforms

Only users have preference.
Preference from both sides.

Scarcity in the supply side.



MULTI-SIDED MARKET PLATFORM

87

Overwhelmed 
by interviews

No interview

Employers Personalized rankings Candidates Interviews they get



MULTI-SIDED MARKET PLATFORM

88

Societal Roles of Recommender Systems

Overwhelmed 
by interviews

No interview



Thank you!
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Thorsten Joachims (Cornell) 
Miro Dudik (Microsoft Research, NYC)
Akshay Krishnamurthy (Microsoft Research, NYC) 
Pavithra Srinath (Microsoft Research, NYC) 
Maria Dimakopoulou (Netflix) 
Michele Santacatterina (Cornell) 
Luke Wang (Cornell) 
Noveen Sachdeva (UCSB)
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