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INTERACTIVE SYSTEMS SCHEMATIC

Context x comes to the system

System recommends action a

m User responds with reward r(x, a)

x: user information, query information, etc.
a: ranking, recommended music/news, etc.
r: click, dwell time, transactions, etc.



INTERACTIVE SYSTEMS SCHEMATIC

x: user information, query information, etc.
a: ranking, recommended music/news, etc.
r: click, dwell time, transactions, etc.

— n
D = {xi) ai, Tisi=1

Logged Dataset



INTERACTIVE SYSTEMS SCHEMATIC

We collect user interactions for:

@ - Evaluating the system performance

- Learning an improved system



EXAMPLE: NEWS RECOMMENDER

Context X:

 User information/ Visiting history

Action a:

« News article featured in the main

panel.

Reward 1(x, a):
« Reading time
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CONTEXTUAL BANDIT PROTOCOL

@ Repeated Interaction:
m Context X i.i.d follows some distribution P(x).

System chooses action a according to some policy
m(alx).

— The user provides feedback r(x, a) to the presented
action.
g N g




Given a new system, how is the performance of it?

Policy Evaluation

How do we improve and learn new systems?

Policy Learning

10



POLICY EVALUATION

» Definition [Utility of Policy]:

The expected reward/utility of a policy = is:

V(m) = II3x~P(x)]Eafvﬂ(apc)]]5:7”~P(‘r|x,a) 7]

11



ONLINE EVALUATION: A/B TESTING

» Evaluation of Policy m:

» Deploy system m online.
» Foruser x ~ P(x), draws action a ~ m(- |x), receives feedback r(x, a).

» Collect dataset in the format D = {x;, a;, 1;}i=1.

» Construct estimate of the policy utility:

12



ONLINE EVALUATION: A/B TESTING

Draw D; from my S —) Evaluate V()

Draw D, from m, @ — Evaluate V(my)

Draw D5 from m5 @ 3 Evaluate V (m3)

Draw Dlg.” from T3¢ @ ﬁ Evaluate V(T[L‘Tﬂ)

V(ﬂl)

V(ﬂz)

V(ﬂs)

V()
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MOVE ONLINE EVALUATION TO OFFLINE

» Problems with online A/B Testing:

» Long turnaround time.

» High engineering cost.

» Limited number of policies being evaluated.
» High risk of deploying bad policy.

14



MOVE ONLINE EVALUATION TO OFFLINE

» Problems with online A/B Testing:

» Long turnaround time.

» High engineering cost.

» Limited number of policies being evaluated.

» High risk of deploying bad policy.

» |dea: Move online to offline:

logged data

JEE —

I7(”2)

‘7(”4)

V(T[S)

I7(”5)

V(ﬂs)

17(7T7)

V(”l}ﬂ—l)

V()
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GOALS

Provide statistically and computationally efficient way to
evaluate and optimize interactive systems by exploiting
logs of past user interactions.
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Provide statistically and computationally efficient way to
evaluate and optimize interactive systems by exploiting
logs of past user interactions. Specifically:

1. Off-policy Evaluation
2. Off-policy Model Selection
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GOALS

Provide statistically and computationally efficient way to
evaluate and optimize interactive systems by exploiting
logs of past user interactions. Specifically:

ff-policy Evaluation
ff-policy Model Selection
ff-policy Learning

AN
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TALK OUTLINE

Oft-policy Evaluation Off-policy Model Selection
SLOPE: A model selection
Introduction and Background. procedure in OPE.

Counterfactual family of estimators.

Off-policy Learning

Optimization-based framework for Multiple logging policies.

estimator design. o
J Deficient support data.

20



TALK OUTLINE

Off-policy Evaluation

Introduction and Background.

21



OFF-POLICY EVALUATION

» Goal:

Find an estimate V(1) to measure the expected reward of a new policy 7

V() = ]Ex~P(x)IEa~n(a|x)IEr~P(r|x,a) 7]

Using the logged data from a different known logging policy u
D = {xi; aiuu(ailxi)) ri}?zl

» Quality of the estimate V ():

h’_—¥ I N e S —— e —

| MSE(P(m) = E(P(m) —v(m) = Bias (V) + Var (7)) |

LI I A ——_—_"— I S e J
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Challenges

Bias data: selection-bias due to the logging policy.

Partial information data: only observe the reward for recommended action.

23



OFF-POLICY EVALUATION: EXISTING APPROACHES

» Model the bias: Inverse propensity scores (IPS).
» A weighted average of the data according to importance
sampling weights.

n

" 1

Vips(m) = = ) wix,a)
=1

[Horitz & Thompson, 1952; Strehl et al., 2011]
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OFF-POLICY EVALUATION: EXISTING APPROACHES

» Model the bias: Inverse propensity scores (IPS).
» A weighted average of the data according to importance
sampling weights.

) 1N
Vies(m) = ;ZW@“ wno
= _ n(alv)
Wi = am

[Horitz & Thompson, 1952; Strehl et al., 2011]



OFF-POLICY EVALUATION: EXISTING APPROACHES

» Model the bias: Inverse propensity scores (IPS).
» A weighted average of the data according to importance
sampling weights.

..................................................................................................................

1’7 Unbiased estimator under full support.
[@ High variance when logging policy and target policy difter a lot.

26
[Horitz & Thompson, 1952; Strehl et al., 2011]



OFF-POLICY EVALUATION: EXISTING APPROACHES

» Model the world: Direct Model (DM).

» Use logged data D = {x;, a;,13}{=, to estimate reward predictor

5 (x,a), then using this estimate to do the imputation.

R 1% )
Vpm () = gEEﬂ(abﬁ) 0(x;,a)

=1 a

[Dudik et al., 2011]



OFF-POLICY EVALUATION: EXISTING APPROACHES

» Model the world: Direct Model (DM).

» Use logged data D = {x;, a;,13}{=, to estimate reward predictor

5 (x,a), then using this estimate to do the imputation.

X 1% )
Vou () = gEEﬂ(abﬁ) 0(x;,a)
=1 a

D@ Low variance.
[[\T_m Typically has high bias due to model misspecification.

[Dudik et al., 2011] 28



OFF-POLICY EVALUATION: EXISTING APPROACHES

» Doubly Robust Estimator
» Use Direct Model as a baseline, also leverages IPS weighting to
measure the departure from the baseline.

I7DR (m) = I7DM ()

[Robins & Rotnitzky, 1995; Dudik et al., 2011] 2



OFF-POLICY EVALUATION: EXISTING APPROACHES

» Doubly Robust Estimator
» Use Direct Model as a baseline, also leverages IPS weighting to
measure the departure from the baseline.

S 1 :
Por () = Vo () + 52 w(xy a) (=8 xi, ap)

30
[Robins & Rotnitzky, 1995; Dudik et al., 2011]



OFF-POLICY EVALUATION: EXISTING APPROACHES

» Doubly Robust Estimator
» Use Direct Model as a baseline, also leverages IPS weighting to
measure the departure from the baseline.

3 A 1% :
Pon () = Vo () + £ ) wii, @) (=8 @)

15 Unbiased estimator, asymptotically optimal under mild conditions.
D@ Variance improvement over IPS, but still suffer from high variance.

[Robins & Rotnitzky, 1995; Dudik et al., 2011] -



—— Variance
DM IPS

DR

—— Bias

Measurement

———

—

Estimator Space

32



—— Variance
DM IPS .
—— Bias
£ DR
=
=
_ W -

Estimator Space

1.How do we quantify estimators in between?

2.What is the estimator in the sweet spot?

33



TALK OUTLINE

Off-policy Evaluation

Counterfactual family of estimators.
[ICML, 2019]

34



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet W = (W€, wh, w?) of weighting functions:

1Y g 1
Z > el whai + ~ ) nlalxwlp + -

=1 a€A =1 [

INGE

(a;|x)wly;

I
[y

35
Su,Y.*, Wang.L,*, Santacatterina, M., and Joachims,T. CAB: Continuous adaptive blending estimator for policy evaluation and learning. ICML 2019.



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet W = (w¥, wh, w?) of weighting functions:

1% .
~ ) malx) wihaig

=1 a€eA

» First Component (Model part): a;, = 6(x;, a).
» “Model the world” by having a reward estimator for all (x, a) pairs.
» The estimator that purely relies on this is DM, which has weights w = (1,0,0).
» Induce high bias, but typically low variance.
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INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet W = (W€, wh, w?) of weighting functions:

ﬂ(ailxi)wiﬁﬁi

S|
1=

o~
|
[

r(xiiai)
p(ai|x;)

» Second Component (Weighting part): ;: = B(x;, a;) =

» "Model the bias” by correcting the probability mismatch.
» The estimator that purely relies on this is IPS, which put weights w = (0,1,0)

» Induce high variance, but unbiased under mild conditions.
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INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet W = (w¥, wh, w?) of weighting functions:

OB

1 Y
- m(a;|x;))w;y;

Il
[

l

3 (xi,ai)
pai|x;)

» Third Component (Control Variate): y; == y(x;, a;) =

» Used as control variate for variance reduction, example: DR.
» This part could not be used in some partial information setting, such as

Learning to Rank.
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INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Given a triplet W = (w¥, wh, w?) of weighting functions:

n n
1 1
Z Z 7(alx) whay, + 52 n(alx)wPB; + 52 r(alx)w'y;
i=1 a€eA =1 =1

VW () = w¥, Model Part + wﬁ Weighting Part + w! Control Variate

39



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Estimator Wiﬂ (Weighting) ~ w; (Control

Variate)

IPS 0 1 0

DR 1 1 -1
el

MAGIC/SB 1—1 T 0

SWITCH m(alx;) m(a;|x;) 0
I >M} I < M)

u(alx;) plaglx;) ~

40



INTERPOLATED COUNTERFACTUAL ESTIMATOR FAMILY

Estimator w? (Weighting) ~ w; (Control SB(Static Blending)

Variate)

Static weighting and does not
depend on importance weights.

IPS 0 1 0
DR 1 1 -1
SWITCH
clPS 0 ] M,u(al-lxl-) 0
n , 1}
m(a;lx;)
MAGIC/SB 1—1 T 0 Hard switching makes it not
differentiable w.r.t. parameter of
_ e policy and could not be used in
PWITER H{n(a|XJ > M3} H{n(allxl) < M} ° gradient-based learning algorithms.

u(alx;) plaglx;) ~

41



DESIRABLE PROPERTIES

» Applicable for a wide range of settings, like LTR, need to make
control variate term to be 0.
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DESIRABLE PROPERTIES

» Applicable for a wide range of settings, like LTR, need to make
control variate term to be 0.

» Low MSE: data dependent weights that allow an instance
dependent trade-off between bias and variance.
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DESIRABLE PROPERTIES

» Applicable for a wide range of settings, like LTR, need to make
control variate term to be 0.

» Low MSE: data dependent weights that allow an instance
dependent trade-off between bias and variance.

» Sub-differentiable for gradient based learning.

44



CONTINUOUS ADAPTIVE BLENDING (CAB)

CAB is a specific estimator in the interpolated counterfactual estimator family with:

( .
a : u(alx;)
a _ 1 _ 1
Wi, = 1 — min{M (alx)’ }
Veap(m) = VW () with A wh — min{M'u(ailxi) 1)
‘ m(a;|x;)’
\ w! =0

N . a|x; . a;|x; L
Veag(m) = (1 — min {Mﬁga—lng, 1}) XModel Part + min {M ﬁgazlxg, 1} X Weighting Part

45



PROPERTIES OF CAB

» Can be substantially less biased than clipped Estim
IPS and DM. ator

DM 1 0 0
clPS 0 in Mu(a;|x;) 1 0
m(ailx;)

CAB 1—min{MM(a|xi) 1} min{M.u(ailxi) 1} 0

m(alx;)’ m(a;|x;)’




PROPERTIES OF CAB

>  While having low variance compared to IPS
and DR.




PROPERTIES OF CAB

wiﬁ (Weighting) w!

» Subdifferentiable and capable of gradient

based learning: POEM SWIT CED) | m(ailx) 0
BanditNet CH {u(alxi) > M3 {u(ailxi) =M

CAB 1—min{M'u(a|xi) 1} min{M'u(ai'xi) 1} 0

ﬂ(ai|xi)'




PROPERTIES OF CAB

> Unlike DR, can be used in off-policy Learning
to Rank (LTR) algorithm:s.




EXPERIMENTS: SETTINGS

» Batch Learning from Bandit Feedback.
» Datasets: UCI multi-class classification, bandit conversion.
» Model: Logistic Regression
» Policy: Softmax Policy

» Learning to Rank.
» Datasets: Yahoo LTR!
» Model: Gradient Boosted Decision Tree
» Policy: SVM-Rank

50



EXPERIMENTS: UCI DATASET

» Question 1: Can CAB achieve improved estimation by trading bias-
variance through M?

- . alx; . a;|x; L
Veap(m) = (1 — min {M Zgalx;%’ 1}) XModel Part + min {M igazixg’ 1} x Weighting Part

Performance of CAB: satlmage

Amount of Data: 500

0.0014
0.0012 -
0.0010
0.0008 -
0.0006 1
0.0004 -
0.0002 1
0.0000 _

—+— Bias
—— Variance
—e— MSE




EXPERIMENTS: UCI DATASET

variance through M?

Veag(m) = (1 — min {M

» Question 1: Can CAB achieve improved estimation by trading bias-

M(am), 1}) XModel Part + min {MM 1} x Weighting Part

n(alx;)

m(a;|x;)’

Performance of CAB: satlmage

Amount of Data: 500

MSE curves

0.0014
0.0012 -
0.0010
0.0008 -
0.0006 1
0.0004 -
0.0002 1
0.0000 1

0.00301
0.0025 1
0.0020 1

0.0015 -

—+— Bias
—— Variance 0.0010-

MSE 0.0005 -

0.00001__
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EXPERIMENTS: YAHOO LTR!

» Question 1: Can CAB achieve improved estimation by trading bias-
variance through M?

5 : alx; : a;|x; L
Veag(m) = (1 — min {M Zgalx;%’ 1}) XModel Part + min {M%, 1} X Weighting Part

Performance of CAB: Yahoo LTR!

- Amount of Data:0.5 sweeps MSE curves
—+— Bias sa | 0.1 sweeps
207 —— Variance —— 0.2 sweeps
—e— MSE 401 —e— 0.5 sweeps
151 0
30 1.0 sweeps
10 55,
01 . -
. 0 1 2
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EXPERIMENTS

» Question 2: How does CAB compared with other estimators?

letter-recognition pendigits Yahoo! LTR
0-7 1 I I I 1 — ! | I I | 25 I T
0.8 i
0.6 } i 0.7 } il 20 |
== 0.5 ™ 06
O o 15 |
— 0.4 = 0.5 m
z. = = &
' 03 5 04 10
E E O 3 %
0.2 ) 5 | |
0.1 0.2
' 0.1 e |
0 1

log(M)

cIPS =—a SWITCH SB o—e CAB ~— CAB-DR = DM —
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LESSONS LEARNT

k

A family of estimators

l

Flexible bias variance tradeoff

)

CAB (smooth weight clipping)

l

slightly higher bias
+

substantially lower variance

55



A specific weight design - CAB

s there any systematic way to design the
weights for better bias-variance tradeoff?



TALK OUTLINE

Off-policy Evaluation

Optimization-based framework for

estimator design.
[ICML, 2020]
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DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE (DRS)

3 A 1% :
o () = Vo () + 7 ) (i ) (=8 (x00)

75 DR is asymptotically optimal.

D\T—S However, it still suffers from the large variance due to
utilizing the importance sampling weight.

58
Su.Y, Dimakopoulou.M, Krishnamurthy.A, and Dudik.M. Doubly robust off-policy evaluation with shrinkage. ICML, 2020.



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE (DRS)

Replace the original weight w(x, a) by a shrinkage version w(x, a).

Vor(m,,8) = =3ty wx;, a;) (11—8(xi, @;)) + Vo ()

Vors(m,,8) = =¥, w(x;, a;) (=8 (x;, @) + Vppy ()

0 < w(x;,a;) <w(x;,a;)



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE

Replace the original weight w(x, a) by a shrinkage version w(x, a).

A~ A 1 N A ~
VDRS(T[’ w, 5) - im1 W(x;, a;) (;—6(x;, ay)) + Vpy (1)

C} Which form of shrinkage should we use?
Ne)

@ Which one should we use for our specific reward predictor?

60



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE

Our approach:

Directly finding the optimal weights by
minimizing an upper bound of the MSE



APPROACH I: BEING PESSIMISTIC

Assume sup‘r —6(x, a)| <1
X,d

» Bias: Bias(w) < UB(Bias) = E,[|W(x,a) — w(x,a)]]
» Variance: Var(w) S UB(Var) = %[EH[W(X, a)?]



APPROACH I: BEING PESSIMISTIC

Assume sup|r —6(x, a)| <1
X,d

» Bias: Bias(W) < UB(Bias) = E,[|W(x,a) — w(x, a)|]
» Variance: Var(w) S UB(Var) = %IEH[W(x, a)?]
» The optimal weights can be obtained by minimizing:

UB(Bias) + A-UB(Var)
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APPROACH I: BEING PESSIMISTIC

Assume sup‘r —6(x, a)| <1
X,d

» Bias: Bias(W) < UB(Bias) = E,[|W(x,a) — w(x, a)|]
» Variance: Var(w) S UB(Var) = %IEH[W(x, a)?]
» The optimal weights can be obtained by minimizing:

UB(Bias) + A-UB(Var)

» Solution: w(x,a) = min{A, w(x,a)} —=  Clipping Estimator



APPROACH II: BEING OPTIMISTIC

Typically, the reward estimator 6(x, a) is trained to minimize the
weighted square loss based on some weighting function z(x, a):

n

L(6) = %z z(x;, a;) (Ti - 6(x;, ai))z

=1

Popular choices include z = 1, z = w(x,a), z = w(x, a)?

65



APPROACH II: BEING OPTIMISTIC

1
z(x,a)

» Bias: Bias*(W) < E,| W(x,a) —w(x,a))?1L(6)

» Variance: Var(w) < \/IEH[W(’“'“)Z w(x, a)?] \/L(S)

z(x,a)

» Using similar trick to minimize an upper bound of MSE.

A
A+w(x,a)?

w(x,a) —=) Shrinkage Estimator

66

» Solution: W(x,a) =



DOUBLY ROBUST ESTIMATOR WITH SHRINKAGE

Ly, min{, w(x, )} (=8 (xi, @) + Vo (m)

VDRS_p (n, W, 5)

1y A w(x, @) (;—=6(x;, a;)) + Vpy ()

n“=1 ) w(ix,a)?

Vbrs—-o (7T: w,

» Interpolating between DM and DR:

- A =0 - Vppy(m), small variance, large bias
- A =00 = Vpp(m), large variance, small bias



EMPIRICAL EVALUATION

For non-combinatorial bandit, we perform 108 settings:

- 9 UCI multi-class classification datasets

- 6 different logging policies

- 7 reward conditions: deterministic reward and stochastic reward

68



EMPIRICAL EVALUATION

» Ablation Studies for DR with shrinkage.

VDRS(T[ S) - = n o W(x;, a;) (r;— 5(951» a;)) + VDM(T[)

- evaluating different reward predictors: z = 1, w(x, a), w(x, a)*.

z(x;, a;) (Ti - 6(x;, ai))z

M:

A 1
L&) =

I
[y

[

- evaluating the optimistic and pessimistic shrinkage types.

69



EMPIRICAL EVALUATION

How often across 108 DM
conditions is each of
the reward predictor

the best? o
shrinkage

70
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EMPIRICAL EVALUATION

Do we need both pessimistic shrinkage and optimistic shrinkage?

Pessimistic wins Tie  Optimistic wins

How often across 108
conditions is each of
them better in DR
with shrinkage?

71



EMPIRICAL EVALUATION

CDF of relative error: 108 cases

-
o

e

DM
snDR
SWITCH
DRs
snIPS

=
N

normalized value of learned policy
(=}
o

206
Q0
3
o
a 0.4
0.8
0.2
0.0 0.6-
0.3 0.5 0.8 1.0 1.2 1.5 optdigits pendigits let-rec satimage

Relative Error w.r.t. snIPS

Evaluation Performance Learning Performance
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LESSONS LEARNT

)

Instead of manually constructing
estimators, there is an optimization-
based framework to design
estimators.

)

Different reward predictors and
weight shrinkage types perform
well in different settings.

73



- . alx; . a;|x; L
Veag(m) = (1 — min {Mﬁga—lng, 1}) XModel Part + min {M ﬁgailxi% 1} X Weighting Part

1

VDRS—p (”» w, S) - 7 i=1 min{4, w(x, a)}(ri—6 (x;, a;)) + Vpy ()

g -~ a . 1 n A
VDRS—o(”» W, 5) ~ n2El iw(xa)?

w(x, a) (r;—8(x;, a;)) + Vpy (1)

How do we select the hyper-parameters in OPE?

74



TALK OUTLINE

Off-policy Model Selection
SLOPE: A model selection

procedure in OPE.
[ICML, 2020]
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OFF POLICY MODEL SELECTION

Off-policy Model Selection:

Among a family of off-policy estimates V(77),

selects the one with highest evaluation accuracy.

76



OFF POLICY MODEL SELECTION: SLOPE

O — i 011} 1(4)

65> 1(5)
— \ariance
— Bias

I; = [6; —2CNF(i),0; + 2CNF ()]

—D

77
Su.Y, Srinath.P, Krishnamurthy.A, Adaptive Estimator Selection for Off-Policy Evaluation, ICML 2020



OFF POLICY MODEL SELECTION: SLOPE

Graph domain Gridworld domain

0.06
- 2CNF(1 Rt

o, + ) 03{} hi) i) 0.04
: é2"’ 1(2) e g 0.01

04
05 E 0.02-
1 =3 °
i = max{i € [M]:njL, I; # 0} € S E QY

78

Su.Y, Srinath.P, Krishnamurthy.A, Adaptive Estimator Selection for Off-Policy Evaluation, ICML 2020



OFF POLICY LEARNING

Off-policy Learning:
Learn an optimal policy ™" in some hypothesis space Il
n* = argmax e V()
Tool: ERM based on an OPE estimate

fi* = argmax e V()

79



TALK OUTLINE

Off-policy Learning
Multiple logging policies
[CausalML, 2018]

80



OFF POLICY LEARNING: MULTIPLE POLICIES

logged data Training logs are collected under
D, from my . ..
multiple policies.
logged data
D, from m,
D\/J_—\’ Naively using IPS in learning will give
sub-optimal results.
.1, Utilize a weighted estimator, to track
logged data ‘O‘ the divergence between the learned
D, from 1. ="

policy and various logging policies.
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TALK OUTLINE

Off-policy Learning

Deficient support data
[KDD, 2020]
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OFF POLICY LEARNING: DEFICIENT SUPPORT DATA

Effectiveness of IPS relies on the crucial
full support assumption

The logging policy u is said to have
full support for m:
u(alx) > 0 whenever m(alx) > 0

Sachdeva.N*, Su.Y*, Joachims.T, Off-policy Bandits with Deficient Support. KDD, 2020
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OFF POLICY LEARNING: DEFICIENT SUPPORT DATA

[
ﬁ The logging policy needs to assign
D\?’ non-zero probability to every action a
for every context x !
|

_O We propose three efficient approaches

=" to overcome the support deficient issue

<o

by restricting action space,

policy space
and reward extrapolation.
u

Sachdeva.N*, Su.Y*, Joachims.T, Off-policy Bandits with Deficient Support. KDD, 2020
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Beyond off-policy evaluation and learning ...

Fairness

Societal
v Robustness

Roles
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MULTI-SIDED MARKET PLATFORM

Traditional Recommender Systems Multi-sided Market Platforms

1 E 8 R %

NETFLIX & Spotify EheNewllorkBmes  Linkedl] /Q\ airbnb @tinder

ik Preference from both sides.
ik Only users have preference.

¢ Scarcity in the supply side.
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MULTI-SIDED MARKET PLATFORM
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MULTI-SIDED MARKET PLATFORM
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Societal Roles of Recommender Systems
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