Offline Reinforcement Learning for Recommendation

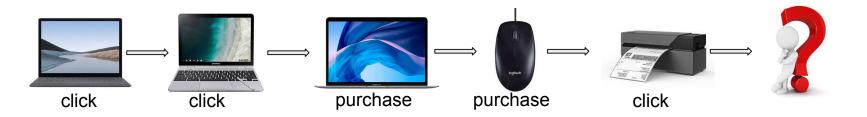
Xin Xin, PhD, University of Glasgow

About Me

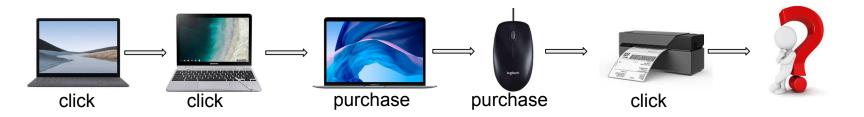
- Basic Information
 - Xin Xin (辛鑫), PhD in School of Computing Science, University of Glasgow
 - Supervised by: Prof. Joemon Jose and Dr. Alexandros Karatzoglou
- Research Interest
 - Recommender systems, information retrieval, machine learning & reinforcement learning
- Contact Me
 - E-mail: <u>x.xin.1@research.gla.ac.uk</u>
 - Homepage: <u>https://xinxin-me.github.io/</u>
 - Wechat ID: xin_glazt

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
- Promising Directions

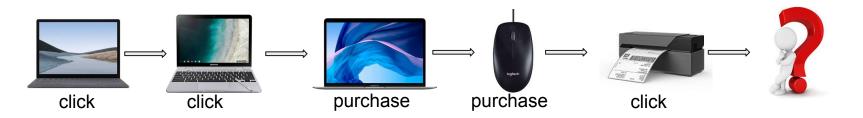
• Background and Motivation



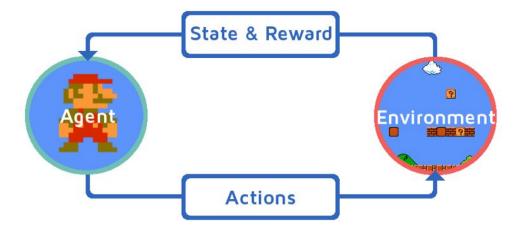
• Recommender systems (RS) aim to provide interesting items to users according to previous interactions



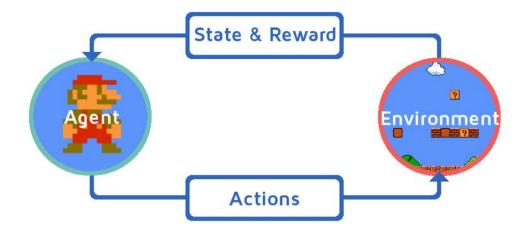
- Recommender systems (RS) aim to provide interesting items to users according to previous interactions
- A typical training method of RS is supervised learning



- Recommender systems (RS) aim to provide interesting items to users according to previous interactions
- A typical training method of RS is supervised learning (SL)
- There are some practical needs which SL may be ineffective to model
 - long-term user engagement
 - promoting purchases
 - longer dwell time, etc.



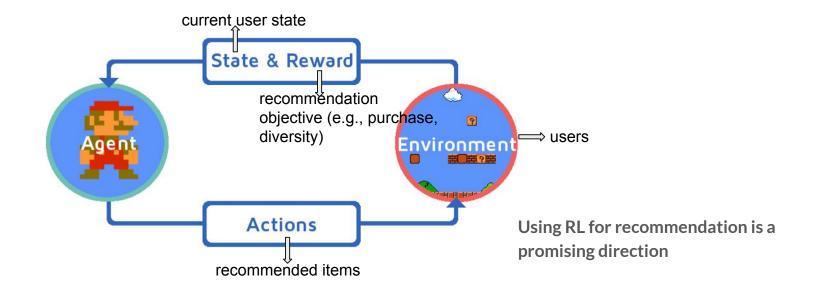
The **RL agent** is trained to take **actions** given the **state** of the **environment** with the objective of getting the **maximum long-term rewards**.



The **RL agent** is trained to take **actions** given the **state** of the **environment** with the objective of getting the **maximum long-term rewards.**

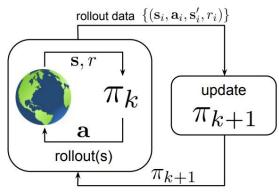
Advantage of RL:

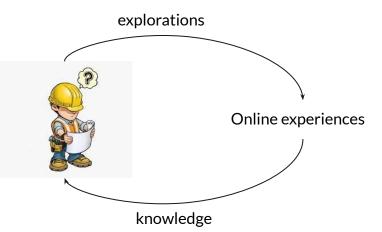
- Flexible reward setting
- Long-term optimization



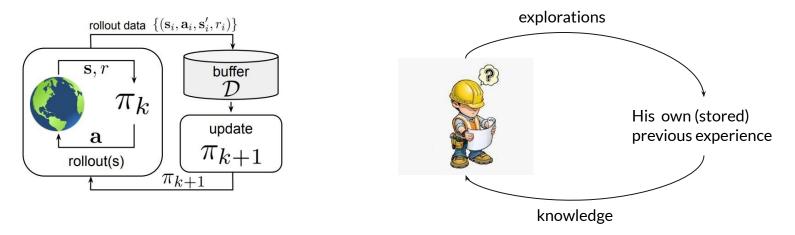
- Background and Motivation
- Research Challenges
 - **RLOverview**

- RL is a more human-like learning approach
 - Learning through 'making errors'
- On-policy(online) RL one of the most widely used methods
 - Policy Gradient, Monte-Carlo estimator



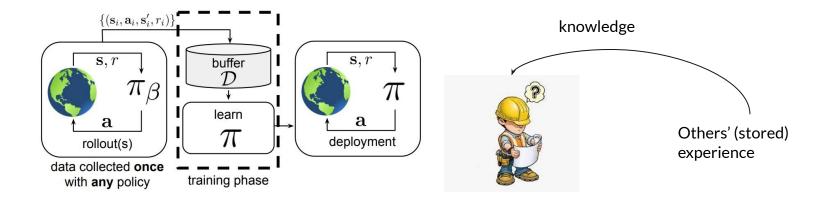


- On-policy RL is data inefficient
- Space for data reuse (improved data efficiency)-->off-policy RL
 - Q-learning, actor-critic, soft actor-critic, etc.

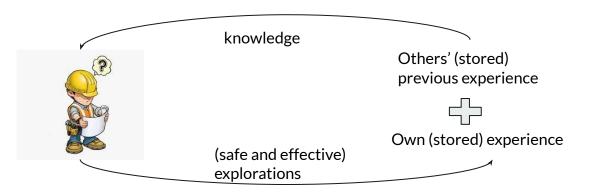


- Recommendation is a user-oriented task
 - Making 'errors' is too expensive
 - On-policy learning could be infeasible
 - We hope that the agent can learn a good policy without affecting the real user experience
 - Learning from historical logged data
 - Off-policy methods learn from 'own' experiences
 - Logged data is not controlled by the agent
 - Still needs plenty of new online interactions

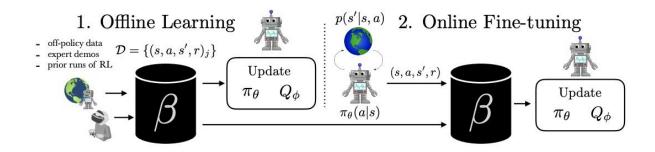
• Offline RL is pure 'off-policy'



- An expected RL-based recommendation learning approach
 - Offline learning+online fine-tuning



- Offline RL provides an acceptable starting point for RL-based recommendation
 - Offline RL is expected to overperform supervised learning (behaviour cloning)



- Background and Motivation
- Research Challenges
 - RL Overview
 - Challenge Analysis

- Offline RL vs Supervised Learning
 - SL trains a model that attains minimum supervised loss on data coming from the same distribution as the training data
 - regression to training data
 - Offline RL is about making counterfactual inferences, i.e., "what if" questions.
 - what might happen if the agent were to carry out actions different from the training data
 - if we want the learned policy to perform better than the SL, we must execute 'something new'
 - 'Making new' is not so easy....

• Distribution Shift • RL objective: $\max_{\pi_{\theta}} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$, where $R(\tau) = \sum_{t=0}^{|\tau|} \gamma^{t} r(\mathbf{s}_{t}, a_{t})$,

- **Distribution Shift**
- Distribution Shift RL objective: $\max_{\substack{\pi_{\theta} \\ \sigma}} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$, where $R(\tau) = \sum_{t=0}^{|\tau|} \gamma^{t} r(\mathbf{s}_{t}, a_{t})$, Desired gradient (using "log-trick")

 $\mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]$

- **Distribution Shift**
 - Distribution Shift RL objective: $\max_{\substack{\pi_{\theta} \\ \sigma}} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$, where $R(\tau) = \sum_{t=0}^{|\tau|} \gamma^{t} r(\mathbf{s}_{t}, a_{t})$, Desired gradient (using "log-trick")

 $\mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]$

Estimated gradient (off-policy) Ο

 $\mathbb{E}_{\tau \sim \beta} [R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]$

- **Distribution Shift**
- Distribution Shift RL objective: $\max_{\substack{\pi_{\theta} \\ \sigma}} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$, where $R(\tau) = \sum_{t=0}^{|\tau|} \gamma^{t} r(\mathbf{s}_{t}, a_{t})$, Desired gradient (using "log-trick")

$$\mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]$$

Estimated gradient (off-policy) 0

$$\mathbb{E}_{\tau \sim \beta} [R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]$$

There is the distribution discrepancy.

- Lack of Rewards
 - Rewards is sparse in RS
 - Lack of negative rewards

 $\begin{array}{c} click \ purchase \\ x_{1:t} \ \left\{ x_1, \quad x_2, \quad \dots, \quad x_{t-1}, \quad x_t \right\} \\ Q(s_0, x_1) = reward \ of \ click + max_a \ Q(s_1, a) \\ Q(s_1, x_2) = reward \ of \ purchase + max_a \ Q(s_2, a) \\ Q(s_0, x_1^-) = ? \ Q(s_1, x_2^-) = ? \quad \equal term ing \ constraints \ \equal term ing \ \equal term index in the set of \ \equal term index i$

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
 - Inverse Propensity Score

Inverse Propensity Score

- Explicitly correct the distribution discrepancy
 - Trade-off between bias and variance
 - Smoothing and Cliping
 - Estimation of behavior policy

$$\nabla_{\theta} \mathcal{J}(\pi_{\theta}) = \sum_{s_t \sim d_t^{\beta}(\cdot), a_t \sim \beta(\cdot|s_t)} \omega(s_t, a_t) R_t \nabla_{\theta} \log \pi_{\theta}(\tau) \qquad \omega(s_t, a_t) = \frac{d_t^{\mathcal{H}}(s_t)}{d_t^{\beta}(s_t)} \times \frac{\pi_{\theta}(a_t|s_t)}{\beta(a_t|s_t)}$$

[1]Chen, Minmin, et al. "Top-k off-policy correction for a REINFORCE recommender system." *Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining*. 2019.

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
 - Inverse Propensity Score
 - Batch Constrained Q-learning

Batch Constrained Q-learning

- Explicitly restrict the action space to the logged data
 - through a supervised generative model
 - allow explorations in a trust region

Algorithm 1 Batch Constrained Q-Learning

1. Input: Batch data \mathcal{B} , horizon T, target network update rate τ , mini-batch size N, threshold τ .

2. Initialize Q-networks Q_{θ} , generative model G_{ω} (trained in a standard supervised learning fashion, with a cross-entropy loss) and target networks $Q_{\theta'}$, with $\theta' \leftarrow \theta$.

3. for t = 1 to T do

4. Sample mini-batch M of N transitions (s, a, r, s') from \mathcal{B}

5.
$$a' = \arg \max_{a'\mid \frac{G_{\omega}(a'\mid s')}{\max_{a}G_{\omega}(\hat{a}\mid s')} > \tau} Q_{\theta}(s', a')$$

6. $\theta \leftarrow \arg \min_{\theta} \sum_{(s,a,r,s') \in M} l_{\kappa} (r + \gamma Q_{\theta'}(s', a') - Q_{\theta'}(s, a))$
7. $\omega \leftarrow \arg \min_{\omega} - \sum_{(s,a) \in M} \log G_{\omega}(a|s)$
8. If $t \mod \tau = 0$: $\theta' \leftarrow \theta$

9. end for

[2] Fujimoto, Scott, David Meger, and Doina Precup. "Off-policy deep reinforcement learning without exploration." *International Conference on Machine Learning*. PMLR, 2019.

[3] Dynamic Personalized Pricing Using Batch Deep Reinforcement Learning: An Application to LiveStream Shopping," DRL4IR 2020

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
 - Inverse Propensity Score
 - Batch Constrained Q-learning
 - Self-Supervised RL

Self-Supervised RL

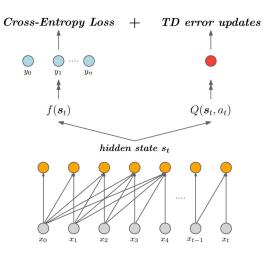
- Self-Supervised Q-learning
 - The Q-value estimator acts as a regularizer
 - The recommendation is still generated from SL
 - A shared base model for knowledge transfer between SL and RL

Cross-Entropy loss provides ranking (negative) gradient signals

$$\bigcup L_{SQN} = L_s + L_q.$$

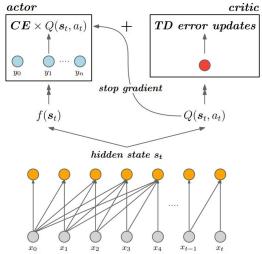
RL loss introduces desired reward settings and long-term perspective

[4] Xin, Xin, et al. "Self-supervised reinforcement learning for recommender systems." *Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.* 2020.



Self-Supervised RL

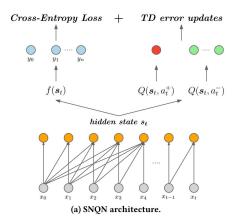
- Self-Supervised Actor-Critic
 - SL as the actor
 - Q-learning output as the critic
 - A shared base model for knowledge transfer between SL and RL
 - Stop gradient when Q-values are used as weights

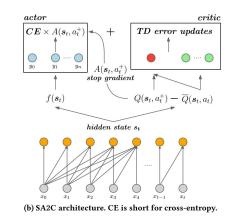


[4] Xin, Xin, et al. "Self-supervised reinforcement learning for recommender systems." *Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.* 2020.

Self-Supervised RL

- Negative Sampling+RL
 - Supervised Negative Q-learning
 - Supervised Advantage Actor-Critic





- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
 - Inverse Propensity Score
 - Batch Constrained Q-learning
 - Self-Supervised RL
 - Uncertainty-Based RL

Uncertainty-Based RL

- Conservative Q-learning
 - we expect the uncertainty to be substantially larger for out-of-distribution actions
 - introduce the uncertainty into Q-value estimation
 - Uncertainty can be defined as the difference between behavior policy and target policy

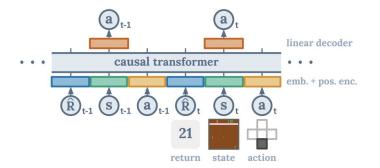
$$\hat{Q}^{k+1} \leftarrow \arg\min_{Q} \alpha \cdot \left(\mathbb{E}_{\mathbf{s}\sim\mathcal{D},\mathbf{a}\sim\mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s},\mathbf{a}) \right] - \mathbb{E}_{\mathbf{s}\sim\mathcal{D},\mathbf{a}\sim\hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s},\mathbf{a}) \right] \right) \\ + \frac{1}{2} \mathbb{E}_{\mathbf{s},\mathbf{a},\mathbf{s}'\sim\mathcal{D}} \left[\left(Q(\mathbf{s},\mathbf{a}) - \hat{\mathcal{B}}^{\pi} \hat{Q}^{k}(\mathbf{s},\mathbf{a}) \right)^{2} \right]$$

[5] Kumar, Aviral, et al. "Conservative q-learning for offline reinforcement learning." arXiv preprint arXiv:2006.04779 (2020).

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
- Promising Directions
 - Self- Supervised Learning + RL

Self-Supervised Learning + RL

- SSL helps to improve the representation learning
 - Increase the data efficiency of RL
 - $\circ \qquad \mathsf{Enough\ offline\ data+powerful\ model} \to \mathsf{Decision\ Transformer}$



[6] Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." arXiv preprint arXiv:2106.01345 (2021).

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
- Promising Directions
 - Self- Supervised Learning + RL
 - Model-Based offline RL

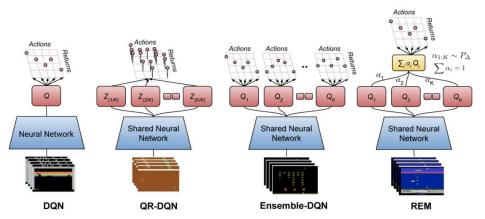
Model-Based Offline RL

- Model-Based RL
 - Learning a simulator from historical records
 - Data augmentation from simulated interactions
 - Distribution shift (bias) in the simulator
 - Debias of the simulator
 - Causal inference, disentangle learning

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
- Promising Directions
 - Self- Supervised Learning + RL
 - Model-Based offline RL
 - Ensemble RL

Ensemble RL

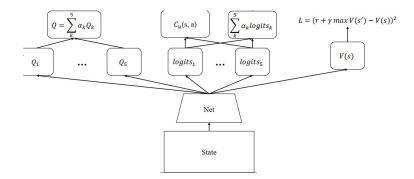
• Ensemble Q-learning for better exploration



[7] Agarwal, Rishabh, Dale Schuurmans, and Mohammad Norouzi. "An optimistic perspective on offline reinforcement learning." *International Conference on Machine Learning*. PMLR, 2020.

Ensemble RL

- Ensemble learning+Uncertainty estimation
 - Exploitation and exploration trade-off: for good actions, we encourage exploitation; for bad actions, we encourage exploration (uncertainty estimation)
 - So how to determine good or bad?
 - 1.from data itself (observed reward)
 - 2.from the comparison between different ensembled models



- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
- Promising Directions
 - Self- Supervised Learning + RL
 - Model-Based offline RL
 - Ensemble RL
 - Online fine-tuning

- Background and Motivation
- Research Challenges
- Offline RL for Recommendation
- Promising Directions
 - Self- Supervised Learning + RL
 - Model-Based offline RL
 - Ensemble RL
 - Online fine-tuning
 - Offline evaluation

Q&A

Thanks for your listening!