Balancing Accuracy and Fairness for Interactive Recommendation with Reinforcement Learning

Weiwen Liu, Feng Liu, Ruiming Tang, Ben Liao, Guangyong Chen, Pheng Ann Heng

Huawei Noah's Ark Lab liuweiwen8@Huawei.com

Interactive Recommender Systems (IRS)

- IRS consecutively recommend items to individual users and receive their feedback in **interactive** processes.
 - Users are involved in the recommendation procedure.
 - Gradually refine the recommendation policy according to the obtained user feedback.
 - To maximize the total utility over the whole interaction period.

Conversion Rate (CVR)

• Measuring recommendation acceptance:

#system's desired activity

#impressions

- A system's desired activity could be downloading from App stores, purchases, or making loans for microlending.
- CVR is one of the most commonly used **objectives** for interactive recommender systems.

Fairness Issues

 Optimizing CVR solely may result in fairness issues, one of which is the unfair allocation of **desired activities** over different demographic groups.

Importance of a Fair Allocation

- Legal
 - In the setting of employment, education, housing, or public accommodation, a fair treatment with respect to race, color, religion, etc., is required by the anti-discrimination laws.
- Financial
 - Under-representing for some groups leads to the abandonment of the system.

•	

creators (item groups)

Fairness vs. Recommendation Accuracy

- Fairness
 - Ideal Fairness ⇒ equally divide the recommendation opportunities to each item group.
 - Users' satisfaction will be affected.
- Recommendation Accuracy
 - Recommendation Accuracy / Personalization
 ⇒ to estimate users' preferences accurately,
 maximizing CVR.
 - Has been proved to favor popular items [Òscar et al., 2008].
 - Usually leads to extremely **unbalanced** recommendation results.

Can we achieve a fairer recommendation while preserving recommendation accuracy?

[Òscar et al., 2008] Celma, Òscar, and Pedro Cano. "From hits to niches? or how popular artists can bias music recommendation and discovery." Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition. 2008.

Fairness vs. Recommendation Accuracy

- Long-term Cumulative Utility
 - Users with particular favor: focusing on improving accuracy (CVR)
 - Users with diversified interests: focusing on improving fairness
 - the lack of fairness at one point time can be compensated for a later time.
- Fair allocation of desired activities:
 - Existing work only considers the allocation of the number of recommendations (exposure).
 - The distribution of desired activities has much larger commercial value.

\mathcal{N}
-
Л

Fairness-aware Recommendation (FairRec)

- When a user u arrives at time step t = 1, ..., T,
 - The current state *s*_t is observed:
 - User Preference State: the user's N most recent positively interacted items.
 - Fairness State: the current allocation distribution of the desired activities x_t at time t.
 - The system takes an action a_t and recommends an item to the user.
 - The user views the recommended item and provides feedback y_{a_t} .
 - The system then receives a reward r_t (a function of y_{a_t}) and updates the model. The objective function is the long-term discounted reward: $R_t = \sum_{k=t}^{T} \gamma^{k-t} r_k$.

Weighted Proportional Fairness for IRS

Definition 1 (Weighted Proportional Fairness) [Frank et al., 1998].

An allocation of desired activities x_t is weighted proportionally fair if it is the solution of the following optimization problem,

$$\max_{x_t} \sum_{i=1}^l w_i (\log x_i^i), \quad s.t. \sum_{i=1}^l x_i^l = 1, \ x_i^l \ge 0, i = 1, \dots, l.$$

- The coefficient w_i ≥ 0 is a pre-defined parameter weighing the importance of each group.
- The optimal solution can be easily solved by standard Lagrangian multiplier methods, namely $x_*^i = \frac{w_i}{\sum_{j=1}^l w_j}$. $x_t = [0.03, 0.1, 0.29, 0.19, 0.39]$

[Frank et al., 1998] Kelly, Frank P., Aman K. Maulloo, and David KH Tan. "Rate control for communication networks: shadow prices, proportional fairness and stability." *Journal of the Operational Research society* 49.3 (1998): 237-252. 9

Fairness-aware Recommendation: FairRec

- We adopted an actor-critic architecture in reinforcement learning.
 - Personalized Fairness-aware State Representation: User preferences and the system's fairness status are jointly compressed into the state representation.
 - **Reward Function Design:** measuring the system's gain regarding accuracy and fairness.

Reward Function Design

• We incorporate the deviation from the optimal solution $x_*^i - x_t^i$ into the reward as the fairness indicator:

$$r_{t} = \begin{cases} \sum_{i=1}^{l} \mathbb{I}_{A_{i}}(a_{t}) (x_{*}^{i} - x_{t}) & \text{if } y_{a_{t}} = 1 \\ -\lambda. & \text{if } y_{a_{t}} = 0' \end{cases}$$

where $\mathbb{I}_A(x)$ is the indicator function and is 1 when $x \in A$, 0 otherwise, x_t^i is the allocation proportion of group i at time t. The constant $\lambda > 1$ is the penalty value for inaccurate recommendations and manages the accuracy-fairness tradeoff.

Experiments

Table 1: Experimental results on MovieLens and Kiva.

	CVR	MovieLens PropFair	s UFG	CVR	Kiva PropFair	UFG
NMF SVD	$0.7972 \\ 0.8478$	$0.8592 \\ 0.8337$	$4.2362 \\ 5.4795$	$\left \begin{array}{c} 0.4211 \\ 0.4870 \end{array} \right $	$0.8473 \\ 0.8686$	$\begin{array}{c} 1.4635 \\ 1.6931 \end{array}$
DeepFM	0.8612	0.8098	5.8323	0.6349	0.8671	2.3752
LinUCB DRR	$0.8577 \\ 0.8592$	$0.8464 \\ 0.8470$	$5.9476 \\ \underline{6.0177}$	$\begin{array}{c} 0.6517 \\ \underline{0.6567} \end{array}$	$0.8697 \\ 0.8645$	$2.4970 \\ 2.5183$
MRPC	0.8361	<u>0.8608</u>	5.2508	0.4286	0.8761	1.5332
FairRec	0.8702*	0.8666*	6.6776*	0.6905*	0.8838*	2.8555*

Table 2: Ablation study on MovieLens and Kiva.

	CVR	MovieLens PropFair	s UFG	CVR	Kiva PropFair	UFG
FairRec(reward-) FairRec(state-)	$egin{array}{c c} 0.8561 \\ 0.8194 \end{array}$	0.8053 0.8758	$5.5957 \\ 4.8494$	0.6935 0.6723	$0.8670 \\ 0.8746$	$2.8290 \\ 2.6688$
FairRec	0.8702	0.8666	6.6776	0.6905	0.8838	2.8555

Conclusions

- We formulate a fairness objective for IRS.
- We propose a reinforcement learning based framework, FairRec, to dynamically maintain a balance between accuracy and fairness in IRS.
- Experiments show that FairRec can achieve a better balance between accuracy and fairness, compared to the state-of-the-art methods.

THANKS

REFERENCES

- [Òscar et al., 2008] Celma, Òscar, and Pedro Cano. "From hits to niches? or how popular artists can bias music recommendation and discovery." *Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition*. 2008.
- [Frank et al., 1998] Kelly, Frank P., Aman K. Maulloo, and David KH Tan. "Rate control for communication networks: shadow prices, proportional fairness and stability." *Journal of the Operational Research society* 49.3 (1998): 237-252.