Hierarchical Multi-Agent Reinforcement Learning for Allocating Guaranteed Display Ads

Lu Wang, Lei Han, Hao Chen, Xinru Chen, Chengchang Li, Junzhou Huang, Weinan Zhang, Wei Zhang, Xiaofeng He, Dijun Luo

Digital Advertising

- The total cost of digital advertising on world wide web is about \$455.30 in 2021.
- Two major online ads
 - real-time bidding (RTB)
 - guaranteed display ads (GDAs)

- an advertiser submits a bid in auctions happening in real time.
- GDAs

• RTB

• an contract is signed to ensure a certain amount of ad impressions to be displayed to some targeted populations.

Allocating Guaranteed Display Ads

TABLE I: A case when advertisers compete.											
	P	ID	Better decision								
	Ad1	Ad2	Ad1	Ad2							
Impression 1	0.5	0.5	1	0							
Impression 2	0	0.3	0	0.8							

Static allocation optimization

PID: proportional-integral-derivative

Multi-agent Reinforcement Learning

Multi-agent Reinforcement Learning for GDAs

- Agent:each ad is with an allocation agent
- State: $s_t^n = [w^n, c_t^n, l_t^n, a_{t-1}^n]$
 - w^n : presents the degree of resource shortage of the contract $(w_n = d_n/S_n)$
 - c_t^n : indicates the distance between current time and the expiration time of the contract. $(c_t^n = t/T)$
 - l_t^n : presents the ratio of accumulated exposure divided by the demand until time step t $(l_t^n = \frac{\sum_{i=1}^t e_i^n)}{d_n}$
- Action: $a_t^n \in [0, 1]$ the ratio of displaying ad n.
- Reward Function:

$$r_t^n = \begin{cases} \lambda_z * \omega & \text{if } l_t^n \in (0.95 * \omega, 1.05 * \omega) \\ (1.05 - l_t^n) * \lambda_o * \omega & \text{if } l_t^n >= 1.05 * \omega \\ -\lambda_{u1} * \omega & \text{if } l_t^n < 0.5 * \omega \\ -\lambda_{u2} * \omega & \text{if } l_t^n <= 0.95 * \omega \end{cases}$$

Hierarchical Multi-Agent Reinforcement Learning

Hierarchical MARL

- All the agent share one policy
 - Not Flexible
- Each agent learns one policy
 - Parameter complexity is large
- Our method: N agents share K policies
 - K << N

Hierarchical MARL for GDAs

- Manager Policy
 - Chooses a sub-policy for each agent every V time steps.
- Sub-Policy
 - Each ad uses the selected sub-policy to take an action to determine whether display the ad.

Hierarchical MARL for GDAs

Manager Policy

 $J(\hat{\theta}) = \sum_{n=1}^{N} \mathbb{E}_{\hat{s}_{t}^{n}, \hat{a}_{t}^{n} \sim \hat{\mu}_{\hat{\theta}}} \left[\sum_{t \in \Upsilon} \gamma^{\lfloor t/V \rfloor} \hat{r}_{t}^{n}(\hat{s}_{t}^{n}, \hat{a}_{t}^{n}) \right]$ $\Upsilon = \{1, 1 + V, 1 + 2V, \dots, 1 + T/V \}$

 Choose a desired sub-policy for the agent based on interaction state and local state.

 $p(\hat{s}_{t+V}^n \mid \hat{s}_t^n, \hat{a}_t^n)$

 A multi-step transition probability function for the manager, which denotes the probability that action a causes the system to transform from state sⁿ_t to state sⁿ_{t+V} in V time steps.

Hierarchical MARL for GDAs

• Sub-Policy

$$J(\theta_k) = \sum_{n=1}^{N} \mathbb{E}_{s_t^n, a_t^n \sim \mu_{\theta_k}(k = \arg\max \hat{a}_t^n)} [\sum_{t=1}^{T} \gamma^{t-1} r_t^n(s_t^n, a_t^n)]$$
(2)

 It's goal is to give a display ratio to obtain the impression for the ad.

Experiment Results

• Performance comparison on the three datasets with different periods for allocation of GDAs.

	`	27/12/2018-03/01/2019		08/11/2018-11/11/2018		16/04/2018	
	Method	UR	NR	UR	NR	UR	NR
Tencent	Random	0.442	0.019	0.190	0.042	0.313	0.030
	Static Action	0.728	0.090	0.913	0.086	0.813	0.171
	DG	0.471	0.508	0.388	0.564	0.485	0.500
	SG	0.388	0.601	0.526	0.435	0.724	0.261
State-of- the-art	PID	0.218	0.760	0.112	0.806	0.224	0.634
	HWM	0.431	0.492	0.281	0.637	0.366	0.470
	SHALE	0.502	0.472	0.221	0.702	0.244	0.606
	LR	0.295	0.683	0.272	0.518	0.388	0.448
	RFR	0.272	0.694	0.250	0.629	0.366	0.590
	FeUdal	0.255	0.692	0.174	0.714	0.299	0.612
	Flat_HMARL	0.237	0.716	0.142	0.761	0.225	0.647
	HMARL	0.138	0.835	0.058	0.875	0.089	0.813

Our Method

Experiment Results

• Visualization Results

Thank You!