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ABSTRACT
Fairness in recommendation has attracted increasing attention due
to bias and discrimination possibly caused by traditional recom-
menders. In Interactive Recommender Systems (IRS), user pref-
erences and the system’s fairness status are constantly changing
over time. Existing fairness-aware recommenders mainly consider
fairness in static settings. Directly applying existing methods to
IRS will result in poor recommendation. To resolve this problem,
we propose a reinforcement learning based framework, FairRec, to
dynamically maintain a long-term balance between accuracy and
fairness in IRS. User preferences and the system’s fairness status are
jointly compressed into the state representation to generate recom-
mendations. FairRec aims at maximizing our designed cumulative
reward that combines accuracy and fairness. Extensive experiments
validate that FairRec can improve fairness, while preserving good
recommendation quality.
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1 INTRODUCTION
Interactive Recommender Systems (IRS) have been widely imple-
mented in various fields, e.g., news, movies, and finance [24]. Dif-
ferent from the conventional recommendation settings [12], IRS
consecutively recommend items to individual users and receive
their feedback in interactive processes. IRS gradually refine the
recommendation policy according to the obtained user feedback
in an online manner. The goal of such a system is to maximize the
total utility over the whole interaction period. A typical utility of
IRS is user acceptance of recommendations. Conversion Rate (CVR)
is one of the most commonly used measures of recommendation
acceptance, computing the ratio of users performing a system’s de-
sired activity to users having viewed recommended items. A desired
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activity could be downloading from App stores, or making loans
for microlending.

However, optimizing CVR solely may result in fairness issues,
one of which is the unfair allocation of desired activities, like clicks
or downloads, over different demographic groups. Under such un-
fair circumstances, majority (over-representing) groups may dom-
inate recommendations, thereby holding a higher proportion of
opportunities and resources, while minority groups are largely
under-represented or even totally ignored. A fair allocation is a
critical objective in recommendation due to the following benefits:

Legal. Recommendation in particular settings are explicitly man-
dated to guarantee fairness. In the setting of employment, education,
housing, or public accommodation, a fair treatment with respect to
race, color, religion, etc., is required by the anti-discrimination laws
[8]. For job recommendation, it is expected that jobs at minority-
owned businesses are being recommended and applied at the same
rate as jobs at white-owned businesses. In microlending, loan rec-
ommender systems must ensure borrowers of different races or
regions have an equal chance of being recommended and funded.

Financial. Under-representing for some groups leads to the
abandonment of the system. For instance, video sharing platforms
like YouTube involve viewers and creators. It is desirable to en-
sure each creator has a fair chance of being recommended and
promoted. Otherwise, if the new creators do not get adequate expo-
sure and appreciation, they tend to leave the platform, resulting in
less user-generated content. Consequently, users’ satisfaction from
both viewers and creators, as well as the platform’s total income
are affected in the long run.

The fairness concern in recommender systems is quite challeng-
ing, as accuracy and fairness are usually conflicting goals to be
achieved to some extent. On the one hand, to obtain the ideal fair-
ness, one could simply divide the recommendation opportunities
equally to each item group, but users’ satisfaction will be affected by
being persistently presented with unattractive items. On the other
hand, existing recommender systems have been demonstrated to
favor popular items [5], resulting in extremely unbalanced recom-
mendation results. Thus, our work aims to answer this question:
Can we achieve a fairer recommendation while preserving or just
sacrificing a little recommendation accuracy?

ar
X

iv
:2

10
6.

13
38

6v
1 

 [
cs

.I
R

] 
 2

5 
Ju

n 
20

21



DRL4IR ’21, July 15, 2021, Virtual Event Weiwen Liu, Feng Liu, Ruiming Tang, Ben Liao, Guangyong Chen, and Pheng Ann Heng

Most prior works consider fairness for the conventional rec-
ommender systems [1, 2], where the recommendation is regarded
as a static process at a certain time instant. A general framework
that formulates fairness constraints on rankings in terms of expo-
sure allocation is proposed in [23]. Individual attention fairness is
discussed in [3]. [25] models re-ranking with fairness constraints
in Multi-sided Recommender Systems (MRS) as an integer linear
programming. The balanced neighborhoods method [4] balances
protected and unprotected groups by reformulating the Sparse LIn-
ear Method (SLIM) with a new regularizer.

However, it is hard to directly apply those methods to IRS due
to:

(i) It is infeasible to impose fairness constraints at every time
instant. Forcing the system to be fair at any time and increasing
fairness uniformly for all users will result in poor recommendations.
In fact, IRS focus on the long-term cumulative utility over the whole
interaction session, where the system could focus on improving
accuracy for users with particular favor, and the lack of fairness
at the time can later be compensated when recommending items
to users with diversified interests. As such, we can achieve long-
term system’s fairness while preserving satisfying recommendation
quality.

(ii) Existing work only considers the distribution of the number
of recommendations (exposure) an item group received. Actually,
the distribution of the desired activities that take place after an
exposure like clicks or downloads has much larger commercial
value and can be directly converted to revenue.

To resolve the above-mentioned problem, we design a novel
Fairness-aware Recommendation framework with reinforcement
learning (FairRec) for IRS. FairRec jointly compresses the user pref-
erences and the system’s fairness status into the current state rep-
resentation. A two-fold reward is designed to measure the system
gain regarding accuracy and fairness. FairRec is trained to maximize
the long-term cumulative reward to maintain an accuracy-fairness
balance. The major contributions of this paper are as follows:

• We formulate a fairness objective for IRS. To the best of our
knowledge, this is the first work that balances accuracy and
fairness in IRS.
• We propose a reinforcement learning based framework, Fair-
Rec, to dynamically maintain a balance between accuracy
and fairness in IRS. In FairRec, user preferences and the sys-
tem’s fairness status are jointly compressed into the state
representation to generate recommendations. We also design
a two-fold reward to combine accuracy and fairness.
• We evaluate our proposed FairRec algorithm on both syn-
thetic and real-world data. We show that FairRec can achieve
a better balance between accuracy and fairness, compared
to the state-of-the-art methods.

2 PROBLEM FORMULATION
2.1 Markov Decision Process for IRS
In this paper, we model the fairness-aware recommendation for
IRS as a finite time Markov Decision Process (MDP), with an action
space A, a state space S, and a reward function 𝑟 : S × A → R.
When a user 𝑢 arrives at time step 𝑡 = 1, . . . ,𝑇 , the system observes

the current state 𝑠𝑡 ∈ S of the user 𝑢 and takes an action 𝑎𝑡 ∈ A
(e.g., recommending an item to the user).

The user views the item and provides feedback 𝑦𝑎𝑡 , e.g., clicking
or downloading on the recommended item, if she feels interested.
Let 𝑦𝑎𝑡 ∈ {0, 1} denote the user’s feedback, with 𝑦𝑎𝑡 = 1 meaning
the user performs desired activities, and 0 otherwise. The system
then receives a reward 𝑟𝑡 (a function of 𝑦𝑎𝑡 ), and updates the model.
The problem formulation is formally presented as follows:

States S: The state 𝑠𝑡 is described by user preferences and the
system’s fairness status. We jointly embed them into the current
state representation. The detailed design of the state representation
is given in Section 3.2.

Transitions P: The transition of states models the dynamic
change of user preferences and the system’s fairness. The successor
state 𝑠𝑡+1 is obtained once the user’s feedback at time 𝑡 is collected.

Action A: An action 𝑎𝑡 is recommending an item chosen from
the available candidate item set A. Our framework can be easily
extended to the case of recommending a list of items. To simplify
our presentations, we focus on recommending an item at a time in
this paper.

RewardR: The reward 𝑟𝑡 is a scalar measuring the system’s gain
regarding accuracy and fairness after taking action 𝑎𝑡 , elaborated
in Section 3.3.

We aim to learn a policy 𝜋 , mapping from states to actions 𝑎𝑡 =
𝜋 (𝑠𝑡 ), to generate recommendations that are both accurate and fair.
The goal is to maximize the sum of discounted rewards (return)
from time 𝑡 onward, which is defined by 𝑅𝛾𝑡 =

∑𝑇
𝑘=𝑡

𝛾𝑘−𝑡𝑟𝑘 , and 𝛾
is the discount factor.

2.2 Weighted Proportional Fairness for IRS
Each item is associated with a categorical protected attribute 𝐶 ∈
{𝑐1, . . . , 𝑐𝑙 }. Let A𝑐 = {𝑎 |𝐶 = 𝑐, 𝑎 ∈ A} denote the group of items
with an attribute value 𝑐 . Take loan recommendation for instance,
if the protected attribute is the geographical region, then A𝑐 with
𝑐 = “Oceania" contains all the loans applied from Oceania. Denote
by 𝑥𝑡 ∈ R𝑙+ the allocation vector, where 𝑥𝑖𝑡 represents the allocation
proportion of group 𝑖 up to time 𝑡 ,

𝑥𝑖𝑡 =

∑𝑡
𝑘=1 𝑦𝑎𝑘1A𝑐𝑖

(𝑎𝑘 )∑𝑙

𝑖
′
=1

∑𝑡
𝑘=1 𝑦𝑎𝑘1A𝑐

𝑖
′ (𝑎𝑘 )

, (1)

where 1𝐴 (𝑥) equals to 1 if 𝑥 ∈ 𝐴, and 0 otherwise. Recall that 𝑦𝑎𝑘
is the user’s feedback on recommended item 𝑎𝑘 . In loan recommen-
dation, 𝑥𝑖𝑡 denotes the rate of funded loans from the region 𝑖 over
all funded ones up to time 𝑡 .

In this work, we focus on a well-accepted and axiomatically
justified metric of fairness, the weighted proportional fairness [10].
Weighted proportional fairness is a generalized Nash solution for
multiple groups.

Definition 2.1 (Weighted Proportional Fairness). An allocation
of desired activities 𝑥𝑡 is weighted proportionally fair if it is the
solution of the following optimization problem,

max
𝑥𝑡

𝑙∑︁
𝑖=1

𝑤𝑖 log(𝑥𝑖𝑡 ), s.t.
𝑙∑︁

𝑖=1
𝑥𝑖𝑡 = 1, 𝑥𝑖𝑡 ≥ 0, 𝑖 = 1, . . . , 𝑙 . (2)
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Figure 1: The architecture of FairRec.

The coefficient 𝑤𝑖 ∈ R+ is a pre-defined parameter weighing
the importance of each group. The optimal solution can be easily
solved by standard Lagrangian multiplier methods, namely

𝑥𝑖∗ =
𝑤𝑖∑𝑙

𝑖
′
=1

𝑤𝑖
′
. (3)

As such, we aim to improve the weighted proportional fairness∑𝑙
𝑖=1𝑤𝑖 log(𝑥𝑖𝑇 ) while preserving high conversions

∑𝑇
𝑡=1 𝑦𝑎𝑡 up to

time 𝑇 .

3 PROPOSED MODEL
This section begins with a brief overview of our proposed FairRec.
After that, we introduce the components of FairRec and the learning
algorithm in detail.

3.1 Overview
To balance accuracy and fairness in the long run, we formulate IRS
recommendation as an MDP, which is then solved by reinforcement
learning.

The previously studied reinforcement learning models can be
categorized as follows: Value-based methods approximate the value
function, then the action with the largest value is selected [31, 32].
Value-based methods are more sample-efficient and steady, but the
computational cost is high when the action space is large. Policy-
based methods directly learn a policy that takes as input of the
current user state and outputs an action [6, 29], which generally
have a faster convergence. Actor-critic architectures take advantage
of both value-based and policy-based methods [17, 30]. Therefore,
we design our model following the actor-critic framework.

The overall architecture of FairRec is illustrated in Figure 1,
which consists of an actor network and a critic network. The actor
network performs time-varying recommendations according to
the dynamic user preferences and the fairness status. The critic
network estimates the value of the outputs associated with the
actor network to encourage or discourage the recommended items.

3.2 Personalized Fairness-aware State
Representation

We propose a personalized fairness-aware state representation to
jointly consider accuracy and fairness, which is composed of the
the User Preference State (UPS) and the Fairness State (FS). State
representation learns a non-linear transformation ℎ𝑡 = 𝑓𝑠 (𝑠𝑡 ) that
maps the current state 𝑠𝑡 to a continuous vector ℎ𝑡 .
User Preference State (UPS). UPS represents personalized user
preferences. We propose a two-level granularity representation:
the item-level and the group-level. The item-level representation
indicates the user’s fine-grained preferences to each item, while the
group-level representation shows the user’s coarse-grained inter-
ests in each item group. Such two-level granularity representation
provides more information on the propensity of different users to-
wards diverse recommendation. Therefore, the agent could focus on
accuracy for the users with particular favor, and the lack of fairness
at a point in time can later be compensated when recommending
items to users with diverse interests.

The input of UPS is the sequence of the user 𝑢’s 𝑁 most recent
positively interacted items, as well as the corresponding group IDs
that the items belong to at 𝑡 . Items belonging to the same group
share the same protected attribute value 𝑐 . Each item 𝑎 is mapped
to a continuous embedding vector 𝑒𝑎 ∈ R𝑑 . The embedding vector
of each group ID 𝑒𝑔 is the average of the embedding vectors of all
items belonging to the group 𝑔. Then each item is represented by

𝜖𝑎 = 𝑒𝑎 + 𝑒𝑔, (4)

where 𝜖𝑎 ∈ R𝑑 , and item𝑎 belongs to group𝑔. The group embedding
𝑒𝑔 is added to serve as a global bias (or a regularizer), allowing items
belonging to the same group to share the same group information.

As for a specific user 𝑢, the affects of different historical inter-
actions on her future interest may vary significantly. To capture
this sequential dependencies among the historical interacted items,
we apply an attention mechanism [27] to weigh each item in the
interacted item sequence. The attention net learns a weight vector
𝛽 of size 𝑁 , 𝛽 = Softmax(𝜔1𝜎 (𝜔2 [𝜖𝑎1 , . . . , 𝜖𝑎𝑁 ] + 𝑏2) + 𝑏1), where
𝜔1, 𝑏1, 𝜔2, 𝑏2 are the network parameters and 𝜎 (·) is the ReLU ac-
tivation function. The user preference state representation𝑚𝑡 is
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obtained by multiplying the attention weights with the correspond-
ing item representations as𝑚𝑡 = [𝛽1𝜖𝑎1 , . . . , 𝛽𝑁 𝜖𝑎𝑁 ], where𝑚𝑡 is
of dimension 𝑁 × 𝑑 and 𝛽𝑖 denotes the 𝑖-th entry in the weight
vector 𝛽 . Therefore, the items currently contributing more to the
outcome are assigned with higher weights.
Fairness State (FS) The input of FS is the current allocation distri-
bution of the desired activities at time 𝑡 . As a complementary for
UPS, FS provides evidence of the current fairness status and helps
the agent to promote items belonging to under-represented groups.
In particular, we deploy a Multi-Layer Perceptron (MLP) to map
the allocation vector 𝑥𝑡 to a latent space, 𝑛𝑡 = MLP(𝑥𝑡 ). Then we
concatenate𝑚𝑡 and 𝑛𝑡 to obtain the final state representation,

ℎ𝑡 = [𝑚𝑡 | |𝑛𝑡 ], (5)

with | | denotes concatenation operation.

3.3 Reward Function Design
The reward is designed to measure the system’s gain regarding
accuracy and fairness. Existing reinforcement learning frameworks
for recommendation only consider the recommendation accuracy,
and one commonly used definition of reward is 𝑟 = 1 if the user
performs desired activities and−1 otherwise [17, 30]. To incorporate
the fairness measure into IRS, we propose a two-fold reward by
first examining whether the user performs the desired activities on
the recommended item, and then evaluating the fairness gain of
performing such a desired activity.

As discussed in Section 2, to achieve the weighted proportional
fairness, the optimal allocation vector is 𝑥𝑖∗ =

𝑤𝑖∑𝑙

𝑖
′
=1

𝑤
𝑖
′
, with𝑤𝑖 the

pre-defined target allocation proportion of group 𝑖 . Therefore, we
incorporate the deviation from the optimal solution 𝑥𝑖∗ − 𝑥𝑖𝑡 into
the reward as the fairness indicator:

𝑟𝑡 =

{∑𝑙
𝑖=1 1A𝑐𝑖

(𝑎𝑡 )
(
𝑥𝑖∗ − 𝑥𝑖𝑡 + 1

)
, if 𝑦𝑎𝑡 = 1

−𝜆, if 𝑦𝑎𝑡 = 0
, (6)

where 1𝐴 (𝑥) is the indicator function and is 1 when 𝑥 ∈ 𝐴, 0
otherwise, 𝑥𝑖𝑡 is the allocation proportion of group 𝑖 at time 𝑡 . The
constant 𝜆 > 1 is the penalty value for inaccurate recommendations
and manages the accuracy-fairness tradeoff. A larger 𝜆 means that
the agent focuses more on accuracy.

Since the fairness metric (Eq. (1) and Eq. (2)) is computed ac-
cording to the number of the desired activities, only positive 𝑦𝑎𝑡
influences fairness. Therefore, we simply give a negative reward
−𝜆 for 𝑦𝑎𝑡 = 0 to punish the undesired activities. When 𝑦𝑎𝑡 = 1, we
compute the fairness score 𝑥𝑖∗ − 𝑥𝑖𝑡 , which is the difference between
the optimal distribution and current allocation. Suppose the user
performs a desired activity on the item 𝑎𝑡 ∈ A𝑐𝑖 . Then the fair-
ness score 𝑥𝑖∗ − 𝑥𝑖𝑡 is negative if the 𝑖-th group is over-representing
(𝑥𝑖𝑡 > 𝑥𝑖∗), and is more negative if A𝑐𝑖 already has a higher rate of
the desired activity, indicating that the system should focus more
on other groups. Similarly, the fairness score 𝑥𝑖∗ − 𝑥𝑖𝑡 is positive if
the 𝑖-th group is currently under-representing (𝑥𝑖𝑡 < 𝑥𝑖∗), and is
more positive ifA𝑐𝑖 is more lacking in the desired activity. We add
1 to the fairness score to ensure the reward is positive if 𝑦𝑎𝑡 = 1.

To sum up, the agent receives a large positive reward if the user
performs a desired activity on the item and the item belongs to an
under-representing group. Whereas the reward is a smaller positive

number if the activity is desired, but the item belongs to an over-
representing (majority) group. We punish the most severely with
𝑦𝑎𝑡 = 0, as it neither contributes to accuracy nor fairness.

3.4 Model Update
Actor Network. The actor network extracts latent features from
𝑠𝑡 and outputs a ranking strategy vector 𝑧𝑡 . The recommendation is
performed according to the ranking vector by𝑎𝑡 = argmax𝑎∈A 𝑒⊤𝑎 𝑧𝑡 .
In particular, we first embed 𝑠𝑡 to ℎ𝑡 following the architecture de-
scribed in Section 3.2, then we stack fully-connected layers on top
of ℎ𝑡 to learn the nonlinear transformation and generate 𝑧𝑡 , as
presented in Figure 1.

Suppose the policy 𝜋𝜃 (𝑠) learned by the actor is parameterized
by 𝜃 . The actor is trained according to 𝑄𝜂 (𝑠𝑡 , 𝑧𝑡 ) from the critic,
and updated by the sampled policy gradient [22] with 𝛼𝜃 as the
learning rate, 𝐵 as the batch size,

𝜃 ← 𝜃 + 𝛼𝜃
1
𝐵

∑︁
𝑡

∇𝑧𝑄𝜂 (𝑠, 𝑧) |𝑠=𝑠𝑡 ,𝑧=𝜋𝜃 (𝑠𝑡 )∇𝜃𝜋𝜃 (𝑠) |𝑠=𝑠𝑡 , (7)

CriticNetwork.The critic adopts a deep neural network𝑄𝜂 (𝑠𝑡 , 𝑧𝑡 ),
parameterized by 𝜂, to estimate the expected total discounted re-
ward E[𝑅𝛾𝑡 |𝑠𝑡 , 𝑧𝑡 ;𝜋], given the state 𝑠𝑡 and the ranking strategy
vector 𝑧𝑡 under the policy 𝜋 . Specifically for this problem, the net-
work structure is designed as follows

𝑄𝜂 (𝑠𝑡 , 𝑧𝑡 ) = MLP( [𝜎 (𝑊ℎℎ𝑡 + 𝑏ℎ) | |𝑧𝑡 ]), (8)

by first mapping ℎ𝑡 to the same space as 𝑧𝑡 with a fully-connected
layer and then concatenating it with 𝑧𝑡 , while MLP(·) denotes a
mutli-layer perceptron, and ℎ𝑡 = 𝑓𝑠 (𝑠𝑡 ) is the state representation
as presented in Section 3.2.

We use the temporal-difference (TD) learning [26] to update
the critic. The loss function is the mean square error 𝐿 =

∑
𝑡 (𝜈𝑡 −

𝑄𝜂 (𝑠𝑡 , 𝑧𝑡 ))2, where 𝜈𝑡 = 𝑟𝑡 + 𝛾𝑄𝜂′ (𝑠𝑡+1, 𝜋𝜃 ′ (𝑠𝑡+1)). The term 𝜈𝑡 −
𝑄𝜂 (𝑠𝑡 , 𝑧𝑡 ) is called time difference (TD),𝜂 ′ and𝜃 ′ are the parameters
of the target critic and actor network that are periodically copied
from 𝜂, 𝜃 and kept constant for a number of iterations to ensure
the stability of the training [16]. The parameter 𝜃 is updated by
gradient descent, with 𝛼𝜂 the learning rate and 𝐵 the batch size:

𝜂 ← 𝜂 + 𝛼𝜂
1
𝐵

∑︁
𝑡

(𝜈𝑡 −𝑄𝜂 (𝑠𝑡 , 𝑧𝑡 ))∇𝜂𝑄𝜂 (𝑠𝑡 , 𝑧𝑡 ) . (9)

4 EXPERIMENTS
4.1 Experimental Settings
We evaluate the proposed FairRec algorithm on both synthetic and
real-world data, comparing with the state-of-the-art recommenda-
tion methods in terms of fairness and accuracy.

4.1.1 Datasets. We use MovieLens1 and Kiva.org datasets for eval-
uation.

MovieLens is a public benchmark dataset for recommender sys-
tems, with 943 users, 1,602 items and 100,000 user-item interactions.
Since the MovieLens data do not have protected attributes, we cre-
ated 10 groups to represent differences among group inventories,
and randomly assigned movies to each of such groups following a
geometric distribution. An interaction with the rating (ranging from
1https://grouplens.org/datasets/movielens
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Table 1: Experimental results on MovieLens and Kiva.

NMF SVD DeepFM LinUCB DRR MRPC FairRec

MovieLens
CVR 0.7972 0.8478 0.8612 0.8577 0.8592 0.8361 0.8702*

PropFair 0.8592 0.8337 0.8098 0.8464 0.8470 0.8608 0.8666*
UFG 4.2362 5.4795 5.8323 5.9476 6.0177 5.2508 6.6776*

Kiva
CVR 0.4211 0.4870 0.6349 0.6517 0.6567 0.4286 0.6905*

PropFair 0.8473 0.8686 0.8671 0.8697 0.8645 0.8761 0.8838*
UFG 1.4635 1.6931 2.3752 2.4970 2.5183 1.5332 2.8555*

We conduct a two-sided significant test [21] between FairRec and the strongest baseline DRR, where * means the p-value is smaller than 0.05.

1 to 5) larger than 3 is defined as a desired activity in calculating
CVR.

Kiva.org is a proprietary dataset obtained from Kiva.org, con-
sisting of lending transactions over a 6-month period. We followed
the pre-processing technique used in [18] to densify the dataset.
The retained dataset has 1,589 loans, 589 lenders and 43,976 rat-
ings. The geographical region of loans is selected as the protected
attribute, as Kiva.org has a stated mission of equalizing access to
capital across different regions so that loans from each region have
a fair chance to be funded. We define a transaction amount greater
than USD25 as the desired activity for Kiva.

4.1.2 Evaluation Metrics. We evaluate the recommendation accu-
racy by the Conversion Rate (CVR):

CVR =

∑𝑇
𝑘=1 𝑦𝑎𝑘
𝑇

, (10)

and measure the fairness by Weighted Proportional Fairness (Prop-
Fair)2:

PropFair =
𝑙∑︁

𝑖=1
𝑤𝑖 log(1 + 𝑥𝑖𝑇 ) . (11)

Moreover, we propose a Unit Fairness Gain (UFG) to jointly
consider accuracy and fairness,

UFG =
PropFair

CVRmax − CVR
=

PropFair
1 − CVR . (12)

UFG indicates the fairness of the system under unit accuracy budget.
For any recommendation system, the ideal maximum CVR, namely
CVRmax, equals to 1. Thus UFG can be interpreted as the slope
of fairness versus accuracy — the fairness gain if we decrease a
unit accuracy from CVRmax. A larger UFG means a higher value of
PropFair can be achieved with unit deviation from CVRmax, namely,
the larger, the better.

4.1.3 Reproducibility. We randomly sample 80% of the user with
associated rating sequences for training, and 10% for validation, 10%
for testing, so that the item dependencies within each session can
be learned. We use grid search to select the hyper-parameters for all
the methods to maximize the hybrid metric UFG: the embedding di-
mension in {10, 30, 50, 100}, the learning rate in {0.0001, 0.001, 0.01}.
Embedding vectors are pre-trained using standard matrix factor-
ization [12] following the traditional processing as in [17, 30]. For
the proposed FairRec, we set the number of recent interacted items
𝑁 = 5, discount factor 𝛾 = 0.9, the width of each hidden layer

2The input of PropFair is shifted by one to avoid infinity results.

of the actor-critic network is 1000. The batch size is set to 1024,
and the optimization method is Adam. Without loss of generality,
we set 𝑤𝑖 = 1, 𝑖 = 1, . . . , 𝑙 . All results are averaged from multiple
independent runs.

4.2 Results and Analysis
4.2.1 Comparison with Existing Methods. We compare our pro-
posed FairRec with six representative recommendation algorithms:

• NMF. Non-negative Matrix Factorization (NMF) [13] esti-
mates the rating matrix with positive user and item factors.
• SVD. Singular Value Decomposition (SVD) [11] is the clas-
sic matrix factorization based method that decomposes the
rating matrix via a singular value decomposition.
• DeepFM. DeepFM [7] is the state-of-the-art deep learning
model in recommendation that combines the factorization
machines and deep neural networks.
• LinUCB. LinUCB [15] is the state-of-the-art contextual ban-
dits algorithm that sequentially selects items and balances
between exploitation and exploration in IRS.
• DRR. DRR [17] is a deep reinforcement learning framework
designed for IRS to maximize the long-term reward.
• MRPC. Multi-sided Recommendation with Provider Con-
straints (MRPC) [25] is the state-of-the-art fairness-aware
method by formulating the fairness problem as an integer
programming.

Table 1 shows the results. Bold numbers are the best results
and underlined numbers are the strongest baselines. We have the
following observations:

First, the deep learning based method (DeepFM) outperforms
matrix factorization based methods (NMF and SVD) in CVR, while
PropFair of DeepFM is lower. This is consistent with our expec-
tation that DeepFM combines low-order and high-order feature
interactions and has great fitting capability, yet it solely maximizes
the accuracy, with fairness issues overlooked.

Second, LinUCB and DRR generally achieve better CVR than ma-
trix factorization and deep learning methods. It is because LinUCB
and DRR consider the IRS setting, and aims to maximize the long-
term reward. Compared LinUCB to DRR, LinUCB underperforms
DRR since LinUCB assumes states of the system remain unchanged
and fails to tailor the recommendation to match the dynamic user
preferences. DRR is the strongest baseline as it achieves the best
tradeoff between accuracy and fairness, with UFG = 6.0177 on
MovieLens and UFG = 2.5183 on Kiva, respectively.
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Figure 2: Experimental results with embedding dimension 𝑑

on MovieLens: cumulative reward (left) and CVR, PropFair,
and UFG (right).

Third, MRPC considers fairness by adding fairness constraints
for static recommendation. Therefore, MRPC generates the fairest
recommendation on both datasets, but the CVR significantly de-
creases as MRPC ignores the dynamic change of user preferences
and the fairness status.

Fourth, FairRec consistently yields the best performance in terms
of CVR, PropFair, and UFG on both datasets, demonstrating FairRec
is effective in maintaining the accuracy-fairness tradeoff over time.
FairRec outperforms the strongest baselines, DRR, by 1.3%, 2.3%, and
11% in CVR, PropFair, and UFG on MovieLens, and 5.1%, 2.2%, and
13.4% on Kiva. Considering UFG, with unit accuracy loss, FairRec
achieves the most fairness gain. FairRec observes the current user
preferences and the fairness status, and estimates the long-term
discounted cumulative reward. Therefore, FairRec is capable of
long-term planning to manage the balance between accuracy and
fairness.

4.2.2 Influence of Embedding Dimension. Embedding dimension 𝑑
is an important factor for FairRec. We study how the embedding
dimension 𝑑 influences the performance of FairRec. We vary 𝑑 in
{10, 30, 50}, and run 2500 epochs. The cumulative reward and the
test performance are plotted in Figure 2.

We observe that when 𝑑 is large (𝑑 = 30 and 𝑑 = 50), the al-
gorithm benefits from sufficient expressive power and the reward
converges at a high level. As for 𝑑 = 10, the cumulative reward
converges fast at a relatively low value, indicating that the model
suffers from the limited fitting capability. In terms of UFG value,
UFG = 6.68 when 𝑑 = 50, which is slightly better than 6.6 as 𝑑 = 30.
Similar results can be found on Kiva, which is omitted for limited
space. Therefore, we select 𝑑 = 50 in FairRec for all the experiments.

4.2.3 Ablation Study. To evaluate the effectiveness of different
components (i.e., the state representation and the reward function)
in FairRec, we replace a component of FairRec with the standard
setting in RL at each time, and compare the performance with the
full-fledged FairRec. Experimental results are presented in Table 2.
We design two variants: FairRec(reward-) with standard reward
as in [17, 30]; and FairRec(state-) with simple concatenation of
item embeddings as the state representation as in [17].

Results show that FairRec(reward-) generally has high CVR, as
no punishment on unfair recommendation. Moreover, the model
simply optimizes accuracy, failing to balance accuracy and fairness.
As for FairRec(state-), CVR is downgraded significantly, validating
the importance of our designed state representation. Overall, UFG

Table 2: Ablation study on MovieLens and Kiva.

MovieLens Kiva
CVR PropFair UFG CVR PropFair UFG

FairRec(reward-) 0.8561 0.8053 5.5957 0.6935 0.8670 2.8290
FairRec(state-) 0.8194 0.8758 4.8494 0.6723 0.8746 2.6688

FairRec 0.8702 0.8666 6.6776 0.6905 0.8838 2.8555

of FairRec is the largest, confirming that all the components of
FairRec work together yield the best results.

5 RELATEDWORK
Our work is closely related to recommendation with deep reinforce-
ment learning and fairness-aware recommendation.

5.1 Recommendation with Reinforcement
Learning

Reinforcement Learning (RL) recommender systems recommend
items by maximizing the long-term reward, where the reward can
be the number of user repetitive clicks or purchases. Existing RL-
based recommenders can be categorized into value-based methods
[31, 32] and policy-based methods [9, 17, 30].

Value-based methods compute Q-values of each item (or item
subset) given a user state, and the one with the maximum Q-value
is selected and recommended. Zheng et al. incorporate user return
pattern as a supplement to click / no click feedback and adopt a
DeepQ-learning framework for news recommendation [32]. ADQN
framework with Gated Recurrent Units (GRU) is used to capture
users’ positive and negative preferences simultaneously in [31].
However, as value-based methods need to evaluate the Q-values
of all the items under a specific user state [28], the computation
becomes intractable when the number of items is large.

Policy-based methods directly learn a policy that takes as input
of the current user state and outputs an action — the item to be
recommended. Zhao et al. utilized the Deep Deterministic Policy
Gradient (DDPG) framework for page-wise recommendation [30].
Various user state embeddings are studied in [17]. A deterministic
policy gradient with full backup estimation (DPG-FBE) is proposed
for learning the ranking function in [9]. The ranking score of each
item is further computed by the inner product of the item embed-
dings vectors and the learned ranking parameters.

5.2 Fairness-aware Recommendation
Fairness and related concerns have become of increasing impor-
tance in recommender systems [19]. Fairness is defined by the
inverse of JS-Divergence between the actual exposure distribution
and the desired exposure distribution and a post-processing method
is proposed in [20]. Rather than group fairness as we discussed in
this chapter, individual fairness of each item is discussed in [14].
The balanced neighborhoods method [4] formulates the fairness
problem into balancing protected and unprotected groups by impos-
ing a regularizer on the Sparse Linear Method (SLIM). The fairness
constraint is formulated as an integer programming optimization
in [25]. However, all the existing methods (i) only consider the
distribution of the number of recommendations (exposure) an item
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group received. Actually, the distribution of the desired actions like
clicks or downloads is the major concern; (ii) perform the fairness-
aware recommendation at every instant in time, leading to inferior
recommendation results.

6 CONCLUSION
In this work, we propose a fairness-aware recommendation frame-
work in IRS to dynamically balance accuracy and fairness in the
long run with reinforcement learning. In the proposed state rep-
resentation component, the user preference state (UPS) models
both personalized preference and propensity to diversity; the fair-
ness state (FS) is utilized to describe the current fairness status
of IRS. A two-fold reward is designed to combine accuracy and
fairness. Experimental results demonstrate the effectiveness in the
balance of accuracy and fairness of our proposed framework over
the state-of-the-art models.
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