
Hierarchical Multi-Agent Reinforcement Learning for Allocating
Guaranteed Display Ads

Lu Wang∗
luwang@stu.ecnu.edu.cn

East China Normal University
Shanghai, China

Lei Han
leihan@tencent.com

Tencent, Inc.
Shenzhen, Guangzhou, China

Wei Zhang
zhangwei.thu2011@gmail.com
East China Normal University

Shanghai, China

Xinru Chen
xinruchen@tencent.com

Tencent, Inc.
Shenzhen, Guangzhou, China

Chengchang Li
chengchangli@tencent.com

Tencent, Inc.
Shenzhen, Guangzhou, China

Junzhou Huang
Junzhouhuang@tencent.com

Tencent, Inc.
Shenzhen, Guangzhou, China

Weinan Zhang
wnzhang@sjtu.edu.cn

Department of Computer Science
Engineering, Shanghai Jiao Tong

University
Shanghai, China

Xiaofeng He
xfhe@sei.ecnu.edu.cn

East China Normal University
Shanghai, China

Dijun Luo
dijunluo@tencent.com

Tencent, Inc.
Shenzhen, Guangzhou, China

ABSTRACT
In this paper, we study the problem of Guaranteed Display Ads
(GDAs) allocation, which requires proactively allocate display ads to
different impressions to fulfill their impression demands indicated
in the contracts. Existing methods for this problem either assume
the impressions are static or solely consider a specific ad’s benefits.
Thus it is hard to generalize to the industrial production scenario
where the impressions are dynamical and large-scale, and the over-
all allocation optimality of all the considered GDAs is required. To
bridge this gap, we formulate this problem as a sequential decision
making problem in the scope of multi-agent reinforcement learning
(MARL), by assigning an allocation agent to each ad and coordi-
nating all the agents for allocating GDAs. The input are the states
(e.g., the demands of the ad, the remain timesteps for displaying
the ads) of each ad and the impressions at different timestep, and
the output are the display ratios of each ads for each impression.
Specifically, we propose a novel hierarchical multi-agent reinforce-
ment learning (HMARL) method that creates hierarchies over the
agent policies to handle a large number of ads and the dynamics
of impressions. HMARL contains 1) a manager policy to navigate
the agent to choose an appropriate sub-policy and 2) a set of sub-
policies that let the agents perform diversely conditioning on their
states. Extensive experiments on three real-world datasets from
the Tencent advertising platform with tens of millions of records

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

demonstrate significant improvements of HMARL over state-of-
the-art approaches.

CCS CONCEPTS
• Information systems → Display advertising; • Computing
methodologies→ Reinforcement learning.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
LuWang, Lei Han, Wei Zhang, Xinru Chen, Chengchang Li, Junzhou Huang,
Weinan Zhang, Xiaofeng He, and Dijun Luo. 2021. Hierarchical Multi-Agent
Reinforcement Learning for Allocating Guaranteed Display Ads. In SIGIR
’21: ACM SIGIR Conference on Research and Development in Information
Retrieval, July 11–15, 2021, Online. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Advertising is an important industrial problem with a long-term
pursuit in history. As reported in [1], the total cost of digital ad-
vertising on the World Wide Web is around $273B in 2018. There
are two major display advertising paradigms: real-time bidding
(RTB) [15, 37, 39] and guaranteed display ads (GDAs) [6, 8]. In
RTB, an advertiser submits a bid in auctions happening in real
time, while in GDAs, a contract is signed between an advertiser and
an advertising platform in advance to ensure a certain amount of
ad impressions to be displayed to some targeted populations (e.g.,
Female, Los Angeles and Age of 30). While both paradigms play
indispensable roles in industries, the latter one has received much
less research attention from the research field.

In this paper, we address the problem of GDAs allocation, which
aims at allocating suitable display ads to an arrived impression.
This problem is crucial and attracts massive attention from both

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SIGIR ’21, July 11–15, 2021, Online Trovato and Tobin, et al.

𝑠"#

𝑠##

𝑠$#

𝑠%#
𝑠&#

𝑠'#
{Male,
Shanghai,
Age = 24}

{Female,
Chengdu,
Age = 22}

{Female,
Los Angeles,
Age = 30}

{Male,
Beijing,
Age = 48}

𝒕 = 𝟏

agent 1 agent 6

agent 2

agent 3
agent 5

agent 4

𝑠"%

𝑠#%

𝑠$%

𝑠%%
𝑠&%

𝑠'%

𝒕 = 𝟐

agent 1 agent 6

agent 2

agent 3
agent 5

agent 4

𝑠""

𝑠#"

𝑠$"

𝑠%"
𝑠&"

𝑠'"

𝒕 = 𝟑

agent 1 agent 6

agent 2

agent 3
agent 5

agent 4
𝑠"$

𝑠#$

𝑠$$

𝑠%$
𝑠&$

𝑠'$

𝒕 = 𝟒

agent 1 agent 6

agent 2

agent 3
agent 5

agent 4

Figure 1: Allocation process of GDAs in an RL setting. Each
green node indicates an impression with specific targeted
populations and the other nodes indicate the allocation
agents of ads. The ads eligible for the impression aremarked
as red and with arrows, where solid arrow means the ad ob-
tains this impression.

industrial and academic communities [5, 18]. The existing stud-
ies in this respect fall into two main branches: static allocation
optimization and heuristic methods. (1) Static allocation optimiza-
tion aims to find an optimal allocation solution offline based on
a simple assumption that the impressions are static [2, 11, 24, 26].
However, this assumption does not conform to the real industrial
scenario that the impressions continuously arrive and exhibit dy-
namic distributions that are not exactly the same as the previous
distribution. As such, the above methods are hard to generalize
well online and dynamic impressions. (2) On the contrary, heuristic
methods, such as High Water Mark (HWM) [8], SHALE [6], and
proportional-integral-derivative (PID) controllers [4], consider the
temporal dynamics of impressions to make real-time adaptation
of allocation with considerable smoothness. Nevertheless, these
methods solely focus on a single ad’s benefits, which overlook the
reality that the allocation strategy change of one ad might affect
the optimal strategies of other ads.

Table 1 shows a case where ads might compete with each other.
Assume there are two impressions (I1 and I2), both of which have
100 displays, and two ads (Ad1 and Ad2) with the impression de-
mands of 100 and 80, respectively. We further suppose I1 is eligible
for Ad1 and Ad2, which means the user tags of the impression
match the ads’ requirement, while I2 is only eligible for Ad2. When
I1 first comes, PID controllers would give the same number (i.e., 50)
of displays to Ad1 and Ad2. This is because PID controllers consider
the profit of each ad separately. However, since I2 is not eligible
for Ad1, PID controllers have to only give 30 displays to Ad2. As a
result, the Ad1’s demand for impression is not fulfilled. To achieve
better overall optimality of all the considered GDAs, it is better to
coordinate the allocation of ads.

Table 1: A case to show the competition between ads.

Impression PID Better allocation
Ad1 Ad2 Ad1 Ad2

I1 50 50 100 0
I2 0 30 0 80

In contrast to the above studies, we solve the problem of GDAs
allocation with a game-theoretical method to make real-time adap-
tion as well as coordinate the ads’ strategies for global benefits.
This is because: 1) The goal of allocating GDAs is to fulfill all ads’
contracts. 2) Achieving the goal needs a series of allocation deci-
sions for each ad. 3) As aforementioned, it is better to coordinate
the decision of all ads. To achieve this, we formulate this problem
as a multi-agent reinforcement learning problem[16, 21, 23, 27],
wherein each ad (e.g., Ad1 and Ad2 in Table 1) is associated with
an allocation agent and the satisfaction of demands is leveraged to
quantify the reward. The series of actions generated by an agent
corresponds to a Markov decision process (MDP). And the goal of
the problem is to fulfill all the impression demands indicated in
different contracts by maximizing the accumulated reward shown
in Eq. 1. The details of the key components (e.g., agent, reward,
etc.) w.r.t. multi-agent reinforcement learning will be introduced in
Section 3.1.

More precisely, the agents make decisions to gain impressions
at each time step. By evaluating the status of fulfilling the demands
after each agent takes an action, the rewards for different agents
could be determined. Therefore, meeting the demands of all the
contracts is equivalent to solving this decision making problem
among multiple agents. An illustration of the allocation process
in the perspective of the MARL setting is shown in Fig. 1. For
example, when an impression with one display arrives (e.g., t = 3),
the agents (e.g., agent 1, agent 2, and agent 3) whose ads have the
corresponding targeted populations (e.g., Female, Los Angeles, and
Age = 30) take actions to compete for this impression to guarantee
the ads’ contracts. One of the ads (e.g., ad 1 with allocation agent 1)
will be selected for the current display based on their actions and the
eligible allocation agents will obtain reward signals conditioning on
whether their ads get the impression. After that, the agents move
into their new states based on the chosen actions.

Our study is large-scale and developed in the context of a realistic
industry scenario, i.e., Tencent advertising platform, which serves
over a hundred million active users. Modeling a large scale and
varied amount of agents (about 5% to 25% variation w.r.t the total
number of agents each day) allocation agents by MARL is difficult.
Moreover, heterogeneity should be especially considered among the
agents: (1) the agents have individual states and probably perform
diversely, thus needing different policies. For example, some agents
that have many eligible impressions in the morning need a policy
taking more active actions in the morning; and (2) the relationship
among some of the agents, either competitive or cooperative, can
change over time. For instance, some ads with sufficient exposure
will concede the impressions to other ads that are still not fulfilled.

To tackle the above challenges, we propose a novel Hierarchical
Multi-Agent Reinforcement Learning (HMARL) method to create
hierarchies on the agent policies. Specifically, the overall policy is

Hierarchical Multi-Agent Reinforcement Learning for Allocating Guaranteed Display Ads SIGIR ’21, July 11–15, 2021, Online

decomposed into a manager policy and a collection of sub-policies,
wherein the manager policy takes responsible for selecting a sub-
policy for a given agent conditioning on its specific state. The agents
that are assigned with the same sub-policy will share this sub-policy
to determine their actions on impressions, making the parameter
space largely reduced compared with independent agent learning.
To stabilize the convergence, we utilize decentralized actors to
execute agent actions and a centralized critic to coordinate the
actions of multiple agents. We summarize our contributions as
follows:

• To the best of our knowledge, this is the first study to treat
the large scale allocation problem of GDAs as a multi-agent
reinforcement learning problem, which enables to coordinate
the allocation of ads to impression traffic and run parallel
for large scale real-world advertisement platforms.

• We propose a hierarchical multi-agent reinforcement learn-
ing framework to deal with a large number of ads (agents)
with heterogeneous states. The hierarchical framework clus-
ters the agents into different sub-policies instead of learning
individual policies. A coordinated Q-function is learned to
coordinate the agents’ strategies.

• We conduct extensive experiments on real-world datasets
from the Tencent advertising platform. The results demon-
strate that the proposed HMARL method significantly out-
performs the existing methods for the allocation of GDAs,
validating the benefits of introducing sub-policies in the
hierarchical structure.

2 RELATEDWORK
2.1 Allocation of GDAs
Previous work on allocation of GDAs can be summarized into
two categories: static optimization based methods and heuristic
methods. Static optimization based methods try to find a near-
optimal solution by modeling this problem as a special version of
static optimization on a bipartite graph [2, 11, 17–19, 24, 26, 30] via
linear programming. These methods can find an optimal solution
in a static environment. However, when considering real-world ad
platforms, the distribution of impressions is highly dynamic due to
the effects of both the advertisements and the consumers.

From a more practical view, [35] relies on the estimation of fu-
ture impressions for each specific population to determine a serving
rate of a target contract, which is too costly in industrial scenar-
ios since there are many different populations (e.g., user tags). In-
spired by this study, a more effective method HWM [8] just uses
a greedy heuristic to determine the serving rate for each contract
together with an allocation order. To achieve an approximate opti-
mal allocation solution, SHALE [6] conducts an iterative algorithm
by taking advantages of both the theory-oriented methods and
practice-oriented methods.

Unfortunately, there are problems remained to be solved. They
require an additional control step in online tests to adapt to the
varied impression distributions, such as using feedback signals [8].
It incurs a very heavy computation burden due to a huge amount
of impressions to obtain their allocation solutions. On the contrary,
MARL sets the allocation actions for impressions based on the
agents’ states instead of the whole impression distribution. Thanks

to the state transition in RL, the flexible adaptation of actions could
be naturally achieved.

The advertising platform of Tencent, which contains a volume of
tens of millions of users, chooses PID controllers [4] as the main al-
location algorithm. Despite the practical advantages of this method
as mentioned previously, it fails to model the communication and
coordination among the considered ads, which could be impor-
tant for the allocation problem whose goal is to meet the overall
demands of the corresponding contracts.

2.2 Multi-Agent Reinforcement Learning
The goal of the MARL methods is to coordinate the agents to maxi-
mize the global team returns. The analysis of multi-agent systems
has attracted great interest in both economic theory and artifi-
cial intelligence. The simplest approach for multi-agent systems is
learning the agents independently [20, 23, 33, 38]. However, inde-
pendent learning raises issues. This is because, from the perspective
of any individual agent, the environment is non-stationary due to
the effects of the other agents that act simultaneously. To over-
come this problem, some existing methods have tried to infer other
agents’ policies and consider them in the Q function [21], or use
importance sampling to correct bias in the experience replay [13].
Unluckily, the cases become worse when the amount of agents in-
creases, and some agents have extremely heterogeneous behaviors,
resulting in a more complex multi-agent task. That is, the agents
have either competitive or cooperative relations with each other,
and the relations can even vary over time. More recently, to deal
with both competitive and cooperative agents, the MADDPG (multi-
agent deep deterministic policy gradient) method [21] is developed,
which contains a centralized critic and decentralized actors. And
each actor learns its own policy. Nevertheless, with the growth
of the agent number, the parameter size in MADDPG increases
dramatically, making the method inappropriate for the problem of
GDAs allocation considered here.

2.3 Hierarchical Reinforcement Learning
Long-term decision making is an important problem in traditional
RL domains. The hierarchical reinforcement learning (HRL) is de-
veloped to decompose the long-term decision process into hierar-
chically structured short-term decision processes so that a policy
can be organized along the hierarchy to manipulate an agent’s
behavior at multiple control levels. For example, some HRL meth-
ods use some domain knowledge to design a hierarchy over the
actions [10, 28, 32] to reduce the search space. Another branch
of HRL methods adopts option learning [10, 29, 32], which uses a
two-layer hierarchy containing a manager policy to choose options
and many sub-policies corresponding to different options. A typi-
cal example is the Feudal network [36] that learns a goal (option)
embedding and computes some intrinsic rewards based on the goal
to motivate the agent to act. Cao et al. [7] proposed a hierarchical
critic to utilize the global information as additional reward signals.
However, the above HRL methods focus on the single agent setting.
A few approaches also study hierarchical policy for multi-agent
settings to handle sparse and delayed rewards in the traditional
RL domains [3, 14, 22, 25, 34]. Particularly, inspired by MAXQ [10],
some studies [14, 22, 25] propose to share sub-task value functions

SIGIR ’21, July 11–15, 2021, Online Trovato and Tobin, et al.

Table 2: Notation descriptions.

Notation Description

𝑠𝑡 ∈ R4 lThe local state which consists of
the 𝑛-th agent’s observed features.

𝑠𝑛𝑡 ∈ R𝑁 lThe interaction state of the 𝑛-th agent which
indicates the similarity with the 𝑁 ads.

𝑠𝑛𝑡 = [𝑠𝑛𝑡 , 𝑠𝑛𝑡] The integrated state.
𝑟𝑛𝑡 ∈ R The reward of the manager policy.
𝑟𝑛𝑡 ∈ R The reward of the sub-policy.
𝜇
𝜃

The manager policy with parameter 𝜃 .
𝜇𝜃𝑘 The 𝑘-th sub-policy with parameter 𝜃𝑘 .
𝑎𝑛𝑡 The action generated by manager policy.
𝑎𝑛𝑡 The action generated by sub-policy.

𝑄 (𝑠𝑛𝑡 , 𝑎𝑛𝑡) 𝑄 (𝑠𝑛𝑡 , 𝑎𝑛𝑡) =
∑𝑇
𝑡 ′=𝑡 E[𝑟 (𝑠

𝑛
𝑡 , 𝑎

𝑛
𝑡) |𝑎𝑛𝑡 =𝜇 (𝑠𝑛𝑡)].

�̂��̂� The Q function of the manager policy.
𝑄𝑤𝑘 The Q function of the sub-policy.
𝜖 The similarity threshold.

among agents, which require to pre-define the sub-task and focus
on discrete actions. Recently, neural network based hierarchical
multi-agent models are proposed [3, 34] to assign each agent with
a policy in a toy environment, not applicable for a large-scale envi-
ronment.

In this work, we propose a new hierarchical MARL method and
introduce it to a fresh domain, i.e., the allocation of GDAs, where
the considered number of agents is very large and the agents are
heterogeneous with continuous action spaces.

3 THE HMARL METHOD
In this section, we first formulate the allocation of GDAs as an MDP
problem with detailed definitions for agent, state space, action
space, and reward design, etc. Then, we elaborate on the proposed
HMARL method. Finally, we explain the training processes for the
manager policy and sub-policies, respectively.

3.1 Problem Formulation
We first formulate allocating GDAs as a multi-agent problem or
Markov game [12], where there are𝑁 agents on behalf of merchants
to allocate 𝑁 ads to impressions. A multi-agent problem is defined
by a set of states {S1, ...,S𝑁 } describing the statuses of all display
agents, A𝑛 indicates the action space of agent 𝑛. An action 𝑎 ∈ A𝑛

denotes the adjustment ratio for display. According to state 𝑠𝑛𝑡 of
agent 𝑛 in the 𝑡-th time step, a policy 𝜇 : S → A is to determine
a specific action 𝑎𝑛𝑡 . After each agent takes an action, its state
is transferred to the next one followed by obtaining a reward 𝑟𝑛𝑡
based on a function of the state and all agents’ actions. The initial
states are determined by a predefined distribution. Agent 𝑛 aims to
maximize its own total expected return 𝑅𝑛 =

∑𝑇
𝑡=1 𝛾𝑡−1𝑟𝑛𝑡 where 𝛾

is a discount factor and 𝑇 is a time horizon. We describe the details
of agent and policy in our setting as follows:
• Agent: In GDAs, we consider each ad with an allocation agent.
Since assigning each agent with a unique policy is computation-
ally expensive when the number of ads is large, we consider 𝐾

𝑠"#

𝑠$#

𝑠%#

𝑠&#

Environment

𝑠'#

𝑠(#

𝑠$#

𝑺𝒊𝒏𝒕𝒆𝒓
…𝑠&

#

𝑠'#

Manager

𝝁0

Sub-policy

Select	a	sub-policy
For	each	agent	

𝝁𝟏

𝑺𝒍𝒐𝒄𝒂𝒍

𝑨𝒈𝟏

…𝝁𝟐 𝝁𝑲

𝑨𝒈𝟑 𝑨𝒈𝟒 𝑨𝒈𝟓𝑨𝒈𝟔 𝑨𝒈𝟐

𝑎'# 𝑎&# 𝑎$# 𝑎"# 𝑎%# 𝑎(#

Transition
Policy	
gradient

Policy	
gradient

Agents

𝑻𝒊𝒎𝒆 = 𝒕

Figure 2: Overview of the HMARL method.

allocation sub-policies which are shared among 𝑁 agents, where
𝐾 ≪ 𝑁 . The agents should not only fulfill their own demands but
also coordinate with other agents to satisfy the overall demands
of all contracts from the perspective of an advertising platform.
These agents act in a mixture way that can be both cooperative
and competitive in different time steps.

• Hierarchical Sharing Policy: The proposed HMARL frame-
work consists of a manager policy and a collection of sub-policies,
whose architecture is shown in Fig. 2. Given an impression,
HMARL works by first using a manager policy to select a sub-
policy for each ad that is eligible for the impression based on the
state of the ad. Consequently, it leverages the selected sub-policy
to perform a specific allocation action.
Given an agent, we take the impression that comes at time step

𝑡 and the 𝑛-th ad as examples to explain state, action, and reward
function involved in HMARL as follows:
• State: The agent of the 𝑛-th ad has an interaction state 𝑠𝑛𝑡 which
indicates the global relationship with the other agents and a local
state 𝑠𝑛𝑡 used to describe its situation. We denote 𝑠𝑛𝑡 = [𝑠𝑛𝑡 , 𝑠𝑛𝑡] as
the integrated state. The interaction state 𝑠𝑛𝑡 is represented as an
𝑁 -dimensional binary vector to indicate the relations between
the current agent and the others. To calculate 𝑠𝑛𝑡 , we first compute
the Jaccard similarity between the 𝑛-th ad and the other ads. In
particular, if the Jaccard similarity between the 𝑛-th ad and the
𝑚-th ad is larger than a pre-defined threshold 𝜖 , we set the𝑚-th
value of 𝑠𝑡 as 1. Otherwise, it is set to 0.
The local state is defined as a 4-dimensional vector, where 𝑠𝑛𝑡 =

[𝑤𝑛, 𝑐𝑛𝑡 , 𝑙𝑛𝑡 , 𝑎𝑛𝑡−1]:
(1) 𝑤𝑛 (𝑤𝑛 = 𝑑𝑛/𝑆𝑛) presents the degree of resource shortage
for the ad, where 𝑑𝑛 is its demand and 𝑆𝑛 is the amount of its
eligible impressions. If the ad is a warm-start one, we use its
latest estimated eligible amount of impressions as 𝑆𝑛 . Otherwise,
we use the amount of the ad most similar to 𝑆𝑛 instead. Note

Hierarchical Multi-Agent Reinforcement Learning for Allocating Guaranteed Display Ads SIGIR ’21, July 11–15, 2021, Online

that this is essentially different from forecasting the impression
distribution for each targeted population, which is fine-grained,
costly, and quite error-prone.
(2) 𝑐𝑛𝑡 (𝑐𝑛𝑡 = 𝑡/𝑇) denotes the ratio of how much time has passed
compared to the valid time horizon of the contract.

(3) 𝑙𝑛𝑡 (𝑙𝑛𝑡 =

∑𝑡
𝑡′=1 𝑒

𝑛
𝑡′)

𝑑𝑛
presents the ratio of accumulated displays

divided by the demand until time step 𝑡 , where 𝑒𝑛
𝑡 ′ is the number

of displays for the ad at time 𝑡 ′.
(4) 𝑎𝑛

𝑡−1 denotes the value of allocation action at time step 𝑡 − 1.
• Action: There are two categories of actions in HMARL. The high-
level action is represented as 𝑎𝑛𝑡 = 𝜇

𝜃
(𝑠𝑛𝑡). It is performed by the

manager policy 𝜇
𝜃
and denotes the possibility of the sub-policies

to be selected for the ad. The low-level action for sub-policy 𝜇𝜃𝑘
is denoted as 𝑎𝑛𝑡 = 𝜇𝜃𝑘 (𝑠𝑡), which takes the range [0, 1].
To convert the action value to a real exposure ratio, we follow the
previous work [8]. Given an impression, we first rank the eligible
ads by their action values in descending order. Then the first ad
is assigned with an exposure ratio 𝑒1

𝑡 = 𝑎1
𝑡 , and the 𝑗-th ad is

assigned with an exposure ratio 𝑒 𝑗𝑡 , where 𝑒
𝑗
𝑡 = (1−∑𝑗−1

𝑤=1 𝑒
𝑤
𝑡)𝑎 𝑗𝑡 .

Afterwards, we follow the order and utilize the exposure ratios
to determine the allocation of ads. For example, if the 𝑗-th ad is
not displayed, we continue to determine whether to display the
(𝑗 + 1)-th ad by sampling according to its ratio. If none of the ads
get this impression, it will be used for advertising auctions.

• Reward: 𝑟𝑛𝑡 = R̂ (𝑠𝑛𝑡 , 𝑎𝑛𝑡) and 𝑟𝑛𝑡 = R(𝑠𝑛𝑡 , 𝑎𝑛𝑡) are two kinds of re-
ward functions for manager policy and sub-policies, respectively.
In particular, the manager reward is defined as the summation
of the reward of the corresponding sub-policy it chooses during
the 𝑉 time-steps: 𝑟𝑛𝑡 =

∑𝑡+𝑉
𝑖=𝑡 (𝑟𝑛

𝑖
). Then we formulate the reward

function for sub-policies, which includes three parts:
(1) Self-oriented reward: −(𝑎𝑛𝑡 − (1− 𝑙𝑛𝑡))2 + 0.5. It considers each
individual benefit. When the ratio of the accumulated exposure
is small (e.g., 𝑙𝑛𝑡 = 0), the agent with a larger action value will
obtain a larger reward. Conversely, when the exposure ratio is
large (e.g., 𝑙𝑛𝑡 = 1), the agent with a larger action will obtain a
smaller reward. 0.5 is an offset to keep the reward in a reasonable
range.
(2) Coordination-oriented reward: −(𝑎𝑛𝑡 −

(1−𝑙𝑛𝑡)∑𝑁
𝑖=1 (1−𝑙𝑖𝑡)

)2 + 0.5. This
reward tries to coordinate the agents’ actions by matching the
action with the fraction between the agent’s remaining exposure
ratio and the summation of the other agents’ remaining exposure
ratios.
(3) Temporal reward:

𝑟𝑛𝑡 =


𝜆𝑧 ∗ 𝜔 if 𝑙𝑛𝑡 ∈ (0.95 ∗ 𝜔, 1.05 ∗ 𝜔)
(1.05 − 𝑙𝑛𝑡) ∗ 𝜆𝑜 ∗ 𝜔 if 𝑙𝑛𝑡 >= 1.05 ∗ 𝜔
−𝜆𝑢1 ∗ 𝜔 if 𝑙𝑛𝑡 < 0.5 ∗ 𝜔
−𝜆𝑢2 ∗ 𝜔 if 𝑙𝑛𝑡 <= 0.95 ∗ 𝜔

where 0.95 and 1.05 are slack thresholds of under-delivery and
over-delivery exposures because the exact demand of the contract
is hard to satisfy. 𝜆𝑧 , 𝜆𝑜 , 𝜆𝑢1, 𝜆𝑢2 are manual factors in the range
[0, 1] to control the relative influence of normal-delivery, over-
delivery and under-delivery exposures. 𝜔 takes the form 𝜔 = 𝑡

𝑇
.

This reward also tries to improve the global benefits. In addition,
temporal reward evaluating the agents regularly helps smooth

the action values of the agents. The effectiveness of these reward
parts will be shown in Fig. 5.

3.2 HMARL: The Proposed Method
Our hierarchical architecture is illustrated in Fig. 2. There are two
types of policies. The manager policy decides to choose a sub-
policy based on current observation with the interval of 𝑉 time
steps, and the sub-policy picks a primitive action at each time step.
The objective function of HMARL is to maximize the cumulative
rewards of both the manager policy and the sub-policies to achieve
overall satisfaction.

As the example shown in Table 1, our goal is to allocate the two
ads to the two impressions to satisfy their demands. The rewards
indicate the satisfaction ratios of the ads at each time step. It is
intuitive to maximize the cumulative reward in the long run instead
of the immediate reward 𝑟𝑛𝑡 for the 𝑛-th agent because sacrificing
some display chances of some ads is beneficial for fulfilling the other
ads’ demands which are more urgently needed. With this intuition,
we define the following objective function to be maximized:

𝐽 (𝜃, 𝜃𝑘)𝑘∈{1,...,𝐾 } = 𝐽 (𝜃) +
𝐾∑
𝑘=1

𝐽 (𝜃𝑘) , (1)

where 𝐽 (𝜃) is the objective function of the manager policy. It tries to
maximize the cumulative rewards over all agents, which is defined
as follows:

𝐽 (𝜃) =
𝑁∑
𝑛=1
E𝑠𝑛𝑡 ,𝑎

𝑛
𝑡 ∼𝜇𝜃 [

∑
𝑡 ∈Υ

𝛾 ⌊𝑡/𝑉 ⌋𝑟𝑛𝑡 (𝑠𝑛𝑡 , 𝑎𝑛𝑡)] (2)

where Υ = {1, 1+𝑉 , 1+2𝑉 , · · · , 1+⌊𝑇 /𝑉 ⌋ ·𝑉 }, 𝜇
𝜃
is the manager pol-

icy, and 𝛾 ∈ [0, 1] is a discount factor to determine the importance
of future rewards. Its goal is to select a sequence of sub-policies for
each ad to fulfill its contract. 𝐽 (𝜃𝑘) is the objective function of the
sub-policy 𝑘 , whose goal is to output a display ratio to compete for
an impression. Specifically, the objective function is to maximize
the cumulative rewards received in 𝑇 time steps, which is given by:

𝐽 (𝜃𝑘) =
𝑁∑
𝑛=1
E𝑠𝑛𝑡 ,𝑎

𝑛
𝑡 ∼𝜇𝜃𝑘 (𝑘=arg max𝑎𝑛𝑡) [

𝑇∑
𝑡=1

𝛾𝑡−1𝑟𝑛𝑡 (𝑠𝑛𝑡 , 𝑎𝑛𝑡)] (3)

The parameters 𝜃 and 𝜃𝑘 , {𝑘 = 1, .., 𝐾} will be trained based on
policy gradient [36], wherein the gradient of the objective has the
general form (the subscript 𝑛 and 𝑘 are omitted) as follows:

∇𝜃 𝐽 (𝜃) = E𝜏∼𝜇𝜃 (𝜏) [∇𝜃 log 𝜇𝜃 (𝜏)𝑟 (𝜏)]

= E𝑠𝑡 ,𝑎𝑡∼𝜇𝜃 [
𝑇∑
𝑡=1

∇𝜃 log 𝜇𝜃 (𝑎𝑡 |𝑠𝑡)
𝑇∑
𝑡 ′=𝑡

𝑟 (𝑠𝑡 ′, 𝑎𝑡 ′)] .
(4)

With the theorem of deterministic policy gradient [31], we intro-
duce the𝑄 function, defined as𝑄 (𝑠𝑡 , 𝑎𝑡) =

∑𝑇
𝑡 ′=𝑡 E[𝑟 (𝑠𝑡 ′, 𝑎𝑡 ′) |𝑎𝑡′=𝜇 (𝑠𝑡′)],

to replace
∑𝑇
𝑡 ′=𝑡 𝑟 (𝑠𝑡 ′, 𝑎𝑡 ′) for lower variance. In this paper, we learn

an approximate 𝑄 function with parameter 𝑤 instead of directly
calculating it from the samples. Then Eq. ?? is rewritten as:

∇𝜃 𝐽 (𝜃) = E𝑠𝑡 ,𝑎𝑡∼𝜇𝜃 [
𝑇∑
𝑡=1

∇𝜃 log 𝜇𝜃 (𝑎𝑡 |𝑠𝑡)

·∇𝑎𝑡𝑄𝑤 (𝑠𝑡 , 𝑎𝑡) |𝑎𝑡=𝜇𝜃 (𝑠𝑡)] .
(5)

SIGIR ’21, July 11–15, 2021, Online Trovato and Tobin, et al.

In the following, we elaborate the details of manager policy learning
and sub-policy learning.

3.2.1 Manager Policy Learning. The manager policy in HMARL
produces a higher-level action 𝑎𝑛𝑡 to choose a desired sub-policy for
the 𝑛-th agent based on its interaction state 𝑠𝑛𝑡 and local state 𝑠𝑛𝑡 in
every 𝑉 time steps, where 𝑉 is a hyperparameter to be tuned. We
define a multi-step transition probability function 𝑝 (𝑠𝑛

𝑡+𝑉 | 𝑠𝑛𝑡 , 𝑎𝑛𝑡)
for the manager. It denotes the probability that action 𝑎𝑛𝑡 = 𝜇

𝜃
(𝑠𝑛𝑡)

will cause the system to transform from state 𝑠𝑛𝑡 to state 𝑠𝑛
𝑡+𝑉 in

𝑉 time steps. From time step 𝑡 to 𝑡 +𝑉 , the action 𝑎𝑛𝑡 will not be
changed. After 𝑉 time steps, the manager takes another action
𝑎𝑛
𝑡+𝑉 .
Themanager policy stores its experience in buffer �̂�(𝑠𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , 𝑠𝑛𝑡+𝑉),

where 𝑟𝑛𝑡 is the reward obtained by the manager policy after choos-
ing a sub-policy.More concretely, 𝑟𝑛𝑡 is calculated by 𝑟𝑛𝑡 =

∑𝑡+𝑉
𝑡 ′=𝑡 (𝑟

𝑛
𝑡 ′).

Consequently, the gradient of the manager policy is formulated as
follows:

∇
𝜃
𝐽 (𝜃) =

𝑁∑
𝑛=1
E𝑠𝑛𝑡 ,𝑎

𝑛
𝑡 ∼𝜇𝜃 [

∑
𝑡 ∈Υ

∇
𝜃
𝜇
𝜃
(𝑠𝑛𝑡)∇𝑎𝑛�̂��̂� (𝑠𝑛𝑡 , 𝜇𝜃 (𝑠

𝑛
𝑡))] , (6)

where the Q-value function �̂� w.r.t. time step 𝑡 is obtained by
minimizing the following loss:

L(�̂�) =
𝑁∑
𝑛=1
E𝑠𝑛𝑡 ,𝑎

𝑛
𝑡 ,𝑟

𝑛
𝑡 ,𝑠

𝑛
𝑡+𝑉 ∼𝜇𝜃 [(�̂��̂� (𝑠

𝑛
𝑡 , 𝑎

𝑛
𝑡) − 𝑟𝑛𝑡 (𝑠𝑛𝑡 , 𝑎𝑛𝑡)−

𝛾�̂��̂� (𝑠𝑡+𝑉 , 𝑎𝑡+𝑉))2)}] .
(7)

3.2.2 Sub-Policy Learning. Inspired by MADDPG [21], we use de-
centralized actors and a centralized critic to handle mixed coopera-
tive and competitive environments, where the centralized critic is
used to capture the relations among agents and the decentralized
actors enable to perform actions in parallel. As for sub-policy 𝜇𝜃𝑘 ,
its Q function is given as 𝑄𝑤𝑘 (𝑠𝑡 , 𝑠−𝑡 , 𝑎𝑡 , 𝑎−𝑡), which is a centralized
action-value function taking all the actions and states of the agents
as input. 𝝁 = {𝜇𝜃1 , 𝜇𝜃2 , ..., 𝜇𝜃𝐾 } is a set of sub-policies. 𝑠−𝑡 and 𝑎−𝑡
indicate the average state embedding and the average action of the
agents in except the target agent 𝑛, which are given by:

𝑠−𝑡 =
1

𝑁 − 1

𝑁∑
𝑗≠𝑛

𝑠
𝑗
𝑡 , 𝑎−𝑡 =

1
𝑁 − 1

𝑁∑
𝑗≠𝑛

𝑎
𝑗
𝑡 . (8)

The centralized action-value function 𝑄𝝁
𝑤𝑘

is updated based on
the following loss:

L(𝑤𝑘) =
𝑁∑
𝑛=1
E𝑠𝑛𝑡 ,𝑎

𝑛
𝑡 ∼𝜇𝜃𝑘 (𝑘=arg max𝑎𝑛𝑡)

[(𝑄𝑤𝑘 (𝑠𝑛𝑡 , 𝑠−𝑡 , 𝑎𝑛𝑡 , 𝑎−𝑡) − 𝑦)2]
𝑦 = 𝑟𝑡 + 𝛾𝑄𝑤𝑘 (𝑠𝑛𝑡+1, 𝑠

−
𝑡+1, 𝑎

𝑛
𝑡+1, 𝑎

−
𝑡+1)

𝑎𝑛𝑡+1 = 𝜇𝜃𝑘 (𝑠
𝑛
𝑡+1), 𝑎

−
𝑡+1 = 𝜇𝜃𝑘 (𝑠

−
𝑡+1) ,

(9)

where the input of the 𝑄 function are the states and actions of all
the agents. This is inspired by MADDPG, where the centralized
critic with deterministic policies works well in practice. The reason
would be that if we know the actions taken by all the agents, the
environment is stationary even as the policies change. We use an
alternative gradient descent method to update the Q functions,

where 𝑄𝑤𝑘 is mutually updated by fixing the other 𝐾 − 1 sub-
policies’ parameters.

As for optimizing sub-policy 𝜇𝑘 , the gradient of the expected
return is derived as follows:

∇𝜃𝑘 𝐽 (𝜃𝑘) =
𝑁∑
𝑛=1
E𝑠𝑛𝑡 ,𝑎

𝑛
𝑡 ∼𝜇𝜃𝑘 (𝑘=arg max𝑎𝑛𝑡) [∇𝜃𝑘 log 𝜇𝜃𝑘 (𝑠

𝑛
𝑡)

∇𝑎𝑛𝑡 𝑄𝑤𝑘 (𝑠
𝑛
𝑡 , 𝑠

−
𝑡 , 𝑎

𝑛
𝑡 , 𝑎

−
𝑡) |𝑎𝑛𝑡 =𝜇𝜃𝑘 (𝑠𝑡)𝑛,𝑎−𝑡 =𝜇𝜃𝑘 (𝑠−𝑡)]

(10)

Similar to the previous optimization for Q-functions, the alternative
gradient decent approach adopted for optimizing 𝜃𝑘 keeps the other
policies’ parameters fixed to ensure a more stable training process.

Algorithm 1 HMARL for Allocation of GDAs
Require: Number of sub-policies 𝐾 , number of contracts 𝑁 , re-

ward function 𝑟𝑛𝑡 of the environment, time span 𝑉 , total time
steps 𝑇 , and number of epochs𝑈 .

1: Warm-starting manager policy 𝜇
𝜃
, sub-policies 𝜇𝜃𝑘 , Q-

functions �̂� and 𝑄𝑤𝑘 , and replay buffers �̂� and𝒟𝑘 ;
2: for 𝑒𝑝𝑜𝑐ℎ𝑠 = 0 to𝑈 do
3: clear �̂� and𝒟𝑘 ;
4: for 𝑡 = 1 to 𝑇 do
5: Sample a tuple (𝑠𝑛𝑡 , 𝑎𝑛𝑡 , 𝑠𝑛𝑡+𝑉 , 𝑟

𝑛
𝑡) using manager policy 𝜇

𝜃
.

6: Add (𝑠𝑛𝑡 , 𝑎𝑛𝑡 , 𝑠𝑛𝑡+𝑉 , 𝑟
𝑛
𝑡) into �̂� every 𝑉 time steps (𝑛 =

{1, ..., 𝑁 }).
7: Sample a tuple (𝑠𝑛𝑡 , 𝑎𝑛𝑡 , 𝑠𝑛𝑡+1, 𝑟

𝑛
𝑡) using sub-policy 𝜇𝜃𝑘 .

8: Add a tuple (𝑠𝑛𝑡 , 𝑎𝑛𝑡 , 𝑠𝑛𝑡+1, 𝑟
𝑛
𝑡) into𝒟𝑘 (𝑘 = {1, ..., 𝐾}).

9: Update manager policy 𝜇
𝜃
and Q-function �̂� via �̂�.

10: Update sub-policies 𝜇𝜃𝑘 and Q-function 𝑄𝑤𝑘 via 𝒟𝑘 (𝑘 =

{1, ..., 𝐾}).
11: end for
12: end for

3.3 Training Algorithm
Algorithm 1 shows the training process of the HMARL method. To
facilitate the training, we first pre-train the manager policy and the
sub-policies to provide a warm-start of the parameters. That is, we
first cluster the agents or ads into 𝐾 groups, followed by training
the 𝐾 groups of agents in 𝐾 sub-policies via DDPG [9]. At the same
time, the manager policy 𝜇

𝜃
is pre-trained by classifying the agents

into 𝐾 groups through a simple supervised learning scheme.
In the training stage, we collect the trajectories of the manager

policy and sub-policies. At each time step, we update our model
by sampling tuples from the buffers. Due to the centralized Q-
networks, our method requires to obtain states and actions of all
agents at the same time, and we simultaneously save them to the
buffers. However, for the testing step, only the decentralized policy
networks are used.

Computational complexity: As shown in Algorithm 1, the
time complexity of our method is𝑂 (𝑈𝑇𝑁 (𝑑+∑𝐶𝑐=2 𝑑𝑐−1𝑑𝑐)), where
𝑇 is the number of steps or the number of impressions. 𝑑 is the
dimension of state,𝐶 is the number of layers in the neural network,
and 𝑑𝑐 is the dimension of the 𝑐-th layer in the actor and critic
network.

Hierarchical Multi-Agent Reinforcement Learning for Allocating Guaranteed Display Ads SIGIR ’21, July 11–15, 2021, Online

Table 3: Basic statistics of the real world datasets from Ten-
cent used in this paper.

Log date #Contract #Impression #Demand
16/04/2018 134 2,516,251 137,230

08/11/2018-10/11/2018 716 14,805,173 1,989,820
27/12/2018-03/01/2019 1,727 45,208,115 8,971,240

4 EXPERIMENTS
4.1 Datasets
To validate the performance of the proposed method, we study
three large scale real-world datasets from the Tencent advertising
platform, where we use the actual logs of ads and impressions.
Table 3 shows the statistics of the datasets collected from different
time periods. The first dataset covers a one-day time span, and the
other two datasets are collected using three-day and one-week time
spans, respectively. Following the previous studies [6, 8], the three
datasets were down-sampled with a rate of 1/512. For the obtained
datasets, we used the corresponding active GDAs contracts with
different demands.

As aforementioned, about 5% to 25% of the ads will be updated
every day. The historical log data is used to estimate the total supply
amount of each contract. We segmented the datasets into training
and testing parts. Specifically, for the first one-day dataset, we used
the first 12-hour log data for training and the rest 12-hour log data
for testing. And for the two datasets spanning over multiple days,
we utilized the logs from a previous day to train the model and
the logs of a consequent day for testing. To enable to tune some
hyper-parameters of different methods, we chose a 10% subset from
each train set as the validation set.

In RL, an agent needs to interact with an environment. Luckily,
the GDAs provide a natural environment for the agents to interact.
During training, given the historical log data and the contracts of the
GDAs, we trained our policies by going through the historical log
impressions with several episodes. During each episode, the policy
can be evaluated by measuring whether it fulfills the demands
of the contracts to obtain the reward signal. As for testing, we
utilized the learned policy to act in a new day’s impression logs
and contracts. As such, the offline testing is regarded as an effective
way to evaluate the allocation policy of GDAs [6, 8]. The codes and
desensitized data will be released as the publication of this paper.

4.2 Evaluation Metrics
We chose the performance metrics, i.e., under-delivery rate, normal-
delivery rate, and over-delivery rate, that reflect the interests of
the industrial world to evaluate the different methods described
in Section 4.3. 0.95 and 1.05 were chosen to be slack thresholds of
under-delivery and over-delivery rates because an exact demand
of the contract is hard to be satisfied.

1. Under-delivery Rate: This represents the ratio between the
number of under-delivery contracts and the number of total

contracts, i.e., 𝑈𝑅 =

∑𝑁
𝑛=1 𝐼𝑛
𝑁

, where 𝐼𝑛 is an indicator function. If∑𝑇
𝑡=1 𝑒

𝑛
𝑡 < 0.95 ∗ 𝑑𝑛 , 𝐼𝑛 = 1, and otherwise, 𝐼𝑛 = 0.

2. Normal-delivery Rate: This represents the amount of normal-
delivery contracts accounting for the amount of contracts, i.e.,

𝑁𝑅 =

∑𝑁
𝑛=1 𝐼𝑛
𝑁

. If 0.95 ∗ 𝑑𝑛 ≤ ∑𝑇
𝑡=1 𝑒

𝑛
𝑡 ≤ 1.05 ∗ 𝑑𝑛 , 𝐼𝑛 = 1. Other-

wise, 𝐼𝑛 = 0.
3. Over-deliveryRate: This represents the amount of over-delivery

contracts accounting for the amount of contracts, i.e., 𝑂𝑅 =

1 − (𝑈𝑅 + 𝑁𝑅).
In practice, UR can be considered as the most important metric.
This is because if some contracts are not fulfilled, the advertising
platform will make compensation for the advertisers. OR is also
important, denoting the waste of impressions which causes revenue
loss of the advertising platform.

4.3 Delivery Policies for Comparison
All the adopted methods for comparison in this paper are as follows:
- Random: This method applies a random policy.
- Static Action: This method calculates the allocation fraction𝑤𝑛
(𝑤𝑛 = 𝑑𝑛/𝑆𝑛) as a static action of each agent.

- DG, SG: Both DG and SG give a higher priority to the contracts
that are difficult to fulfill. In particular, DG gives the current
agent whose ad has the highest demand with 𝑎𝑐𝑡𝑖𝑜𝑛 = 1 and
gives 𝑎𝑐𝑡𝑖𝑜𝑛 = 0 for the other agents. SG gives 𝑎𝑐𝑡𝑖𝑜𝑛 = 1 for the
current agent whose ad has the lowest supply and sets the other
agents’ actions to 0.

- HWM [8]: HWM uses a greedy heuristic to determine a serving
rate as the action for each contract together with an allocation
order.

- PID [4]: This approach is deployed on the Tencent advertising
platform. PID designs a minute-level goal for each ad and makes
the ads adjust their actions to fulfill the goals by capturing the
state variation of ads.

- SHALE [6]: SHALE extends HWM to incorporate dual solutions.
It first finds reasonable dual solutions with an iterative algorithm,
followed by converting the reasonable set of dual solutions into
a primal solution.

- LR: It trains a linear regression model by taking the features of
PID as input and the corresponding actions of PID as the labels.

- RFR: RFR replaces linear regression with random forest to train
a policy with the same samples.

- FeUdal [36]: FeUdal is a classical HRL model consisting of a
manager and a worker. The manager takes a high-level action to
generate a goal embedding to guide the worker to take a low-level
action.

- Flat_HMARL: This is the variant of HMARL which is with only
one sub-policy and without the manager policy.

- HMARL: This is the approach proposed in this paper.

4.4 Implementation Details
In this part, we clarify some implementation details of our proposed
approach as follows:

• The manager was trained by DDPG, which contains an ac-
tor network and a critic network (i.e., the Q function). The
actor network has three layers, with the size of 6-32-32-4
and activation functions of relu-relu-softmax, where 6 corre-
sponds to the dimension of state 𝑠𝑛𝑡 shown in Section 3. The

SIGIR ’21, July 11–15, 2021, Online Trovato and Tobin, et al.

Table 4: Performance comparison on the three datasets with
different periods for allocation of GDAs.

27/12/2018-03/01/2019 08/11/2018-11/11/2018 16/04/2018
Method UR NR OR UR NR OR UR NR OR

Random 0.442 0.019 0.537 0.190 0.042 0.770 0.313 0.030 0.642
Static Action 0.728 0.090 0.180 0.913 0.086 0 0.813 0.171 0

DG 0.471 0.508 0.019 0.388 0.564 0.051 0.485 0.500 0
SG 0.388 0.601 0.009 0.526 0.435 0.043 0.724 0.261 0
PID 0.218 0.760 0.020 0.112 0.806 0.086 0.224 0.634 0.127

HWM 0.431 0.492 0.075 0.281 0.637 0.097 0.366 0.470 0.149
SHALE 0.502 0.472 0.024 0.221 0.702 0.087 0.244 0.606 0.134
LR 0.295 0.683 0.021 0.272 0.518 0.220 0.388 0.448 0.149
RFR 0.272 0.694 0.039 0.250 0.629 0.119 0.366 0.590 0.030

FeUdal 0.255 0.692 0.049 0.174 0.714 0.111 0.299 0.612 0.075
Flat_HMARL 0.237 0.716 0.055 0.142 0.761 0.098 0.225 0.647 0.139

HMARL 0.138 0.835 0.022 0.058 0.875 0.073 0.089 0.813 0.082

0.0

0.5

1.0

UR

0.0

0.5

1.0

NR

12-28 12-29 12-30 12-31 01-01 01-02 01-03
Date

0.00

0.05

0.10

OR

SG HWM RFR FEDUAL PID HMARL

Figure 3: Performance of compared methods on different
days (x-axis).

Q function also has three layers, with the size of 4-32-32-1
and activation functions of relu-relu-linear.

• The number of sub-policies was tuned to be 4. Each sub-
policy is learned by DDPG as well.

• The actor network of each sub-policy is a three-layer neural
network (i.e., with the size of 4-32-32-1 and active functions
relu-relu-sigmoid).

• The Q function of each sub-policy is a three-layer neural
network (i.e., with the size 4-32-32-1 and active functions of
relu-relu-linear).

• HMARL was optimized by Adam, with the learning rate 6e-
04 for both the manager network and the actor networks of
sub-policies, and 6e-05 on the critic network.

• We tuned the discount factor 𝛾 among {0.1, 0.3, 0.7, 0.9, 0.93,
0.95, 0.97, 0.99, 1} and obtained the corresponding NR, i.e.,
{0.809, 0.812, 0.804, 0.827, 0.833, 0.843, 0.837, 0.853, 0.844} of
one validation dataset. The best result is 0.853 and thus we
set 𝛾 to 0.99.

• We tuned the time span V to be 5 for its better performance
on validation datasets.

4.5 Performance Comparison
Their different distributions of the impressions and contracts ensure
the comparison to be reliable and robust. Table 4 shows the results
of method comparison on the three datasets that have different
distributions of the impressions and contracts to ensure reliability.
Based on the results, we observe that:

(1) HMARL consistently outperforms the other methods on UR
and NR in different impression distributions. The reasons are: i)
HMARL captures the dynamic change of the impression and con-
tract states to enable the adaptive and sequential decisions based on
its policy function, without relying on the specific impression distri-
bution (compared with HWM and SHALE); ii) HMARL regards the
allocation of GDAs as a multi-step decision process, reflecting the
real-world practice (compared with LR and RFR); iii) instead of con-
sidering the individual interest of each agent, HMARL also consid-
ers the global benefits by coordinating the actions of all the agents
(compared with PID); iv) HMARL utilizes different sub-policies to
handle the heterogeneous states of agents (compared with FeUdal
and Flat_HMARL). However, HMARL does not obtain the smallest
over-delivery rate, as compared to the lower over-delivery rates
achieved by the conservative methods SG and Static Action. The
reason might be that many data examples in the training process
are under the condition of under-delivery rates and thus the policy
is optimized to take large actions.

(2) PID achieves good performance by dynamically capturing the
change of the environment and making adaptive decisions, which
also does not rely on the estimation of impression distributions.
However, compared with HMARL, PID ignores the coordination
among the agents.

(3) Reinforcement learning methods (FeUdal and HMARL) have
better performance than supervised learning (SL) methods, possibly
because the slight change of the action generated by SL may cause
a “drift” sequence compared with the original sequence.

(4) Both HWM [8] and SHALE [6] require an accurate impression
distribution estimation which might cause poor performance due
to the dynamics of the impression distribution.

(5) Although FeUdal ensures the assumption of the Markov de-
cision process, a monolithic policy network is hard to handle the
heterogeneous states of the agents. We observe that agents in FeU-
dal tend to take similar actions.

(6) Static Action, DG, and SG show very low performance on UR
and NR. This is attributed to the fact that these methods neither
consider the dynamic states of the ads nor the coordination for
social benefits. Surprisingly, these conservative policies help these
methods achieve the lowest OR by taking slightly changing actions.
The reason is that they always take a small delivery rate.

In addition, we report the detailed performance on each day
of the one-week dataset in Fig. 3. Due to the varied impression
distribution of each day, all the results of the compared methods
are changed. However, HMARL also consistently outperforms the
other methods in terms of UR and NR and achieves a slightly larger
OR.

Hierarchical Multi-Agent Reinforcement Learning for Allocating Guaranteed Display Ads SIGIR ’21, July 11–15, 2021, Online

2 4 6 8 10
Num of sub-policies

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

e

Metrics
UR
OR

Figure 4: Variation of the UR and OR rates w.r.t. the number
of sub-policies.

0 5 10 15 20 25
Number of episodes

0.0

0.2

0.4

0.6

0.8

UR

HMARL
HMARL-1
HMARL-2

HMARL-3
HMARL-4

0 5 10 15 20 25
Number of episodes

0.2

0.4

0.6

0.8

1.0

NR

HMARL
HMARL-1
HMARL-2

HMARL-3
HMARL-4

Figure 5: Convergence and performance comparison of
HMARL in its variations without different kind of rewards.

4.6 Impact of Different Numbers of
Sub-Policies

It is of great interest to investigate how different numbers of sub-
policies affects the performance of HMARL. Specifically, we test
the number from the set of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and show their
performances in Fig. 4. First of all, when the number is set to 4,
HMARL achieves the best performance. From the perspective of
the overall trend, the performance improves as the number of sub-
policies increases from 1 to 4. This is intuitive since it is necessary
to introduce more agents to handle complex heterogeneous states.
However, when the number of sub-policies exceeds 4, the perfor-
mance of HMARL suffers from a dramatic drop. The reason might
be that it is more challenging to ensure the good convergence of
HMARL and guarantee a rational decision made by the manager
policy with more sub-polices.

4.7 Impact of Different Reward Functions
Reward design plays a crucial role in reinforcement learning. In
this paper, we verify four kinds of reward functions mentioned
in Section 3.1: 1) self-oriented reward, 2) coordination-oriented
reward, 3) temporal reward, and 4) global reward. To evaluate the
effectiveness of different rewards, we each time remove one of
these 4 reward functions in the same order as above and denote
the corresponding methods as HMARL-1, HMARL-2, HMARL-3, and
HMARL-4, respectively. As we can see in Fig. 5: (1) All of the four
reward functions make contributions to improving the performance
of HMARL and promise a convergence. The reason is that, in this

0 100 200 300 400 500
Time Step

0.00

0.25

0.50

0.75

1.00

E
xp

 R
at

e

Method
SG

0 100 200 300 400 500
Time Step

0.00

0.25

0.50

0.75

1.00

E
xp

 R
at

e

Method
PID

0 100 200 300 400 500
Time Step

0.00

0.25

0.50

0.75

1.00

E
xp

 R
at

e

Method
HWM

0 100 200 300 400 500
Time Step

0.00

0.25

0.50

0.75

1.00

E
xp

 R
at

e

Method
RFR

0 100 200 300 400 500
Time Step

0.00

0.25

0.50

0.75

1.00

E
xp

 R
at

e

Method
FeUdal

0 100 200 300 400 500
Time Step

0.00

0.25

0.50

0.75

1.00

E
xp

 R
at

e

Method
HMARL

Figure 6: Visualization of Smoothness.

Table 5: Quantitative Comparison of Smoothness.

Method 𝜎25 𝜎50 𝜎75 𝜎95

SG 0.079 0.187 0.301 0.443
PID -0.021 0.052 0.171 0.355

HWM -0.533 -0.206 0.360 0.476
RFR -0.522 -0.094 0.212 0.417

FeUdal -0.529 -0.227 0.224 0.417
HMARL -0.133 0.001 0.101 0.477

mixed cooperation and competition task, both self-interest and
cooperation rewards are required for agents to adjust their actions
while these cooperating agents encounter conflicts. (2) Self-oriented
reward significantly boosts the convergence and performance of
HMARL. (3) Coordination-oriented reward, temporal reward, and
global reward make nearly equal contributions to improving the
convergence and performance of HMARL. Noting that we consider
the convergence of UR or NR during training as the stopping criteria.
Specifically, if the difference of UR or NR in two consecutive steps
is smaller than 0.02, we regard the training process converges.

4.8 Smoothness Study
In the real world, ad companies desire a smooth exposure as time
goes on, instead of delivering all the demands only focusing on
several hours during a day. Thismotivates us to compare the smooth-
ness of these methods. Intuitively, a perfect smoothness exposure
for a one-day contract display 1/24 demands in every hour. If an
allocation method behaves similarly to the perfect smoothness ex-
posure, it might better comply with the expectation of companies.
As shown in Fig. 6, the red dashed line is the perfect smoothness line
and the y-axis indicates the average cumulative under-exposure
ratio of each ad. We find that none of the compared methods are
the same as the perfect smoothness line. Among them, HWM and
FeUdal are wavier than other methods. PID and HMARL behave
similarly as the perfect line, but at the end of the time steps, HMARL
has a smaller under-exposure ratio than PID.

SIGIR ’21, July 11–15, 2021, Online Trovato and Tobin, et al.

Time Step0 100 200 300 400

Agent

0
2

4
6

8
10

Action

0.0
0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n

0 100 200 300 400 500
Number of Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

os
ur

e
Ra

te

Figure 7: Illustration of 10 randomly selected contracts. (a) Action distribution of each agent. (b) Relation between the actions
and exposure rates.

Table 6: Performance comparison on competitive agents.

Method UR NR OR

Random 0.686 0.0 0.231
Static Action 0.884 0.033 0.0

DG 0.329 0.588 0.0
SG 0.823 0.077 0.016
PID 0.402 0.499 0.016

HWM 0.255 0.597 0.065
SHALE 0.598 0.319 0.0
LR 0.357 0.545 0.015
RFR 0.341 0.545 0.031

FeUdal 0.313 0.589 0.015
HMARL 0.179 0.725 0.013

We follow the definition of the smoothness metric used in the
previous study [8] to evaluate the smoothness of the compared
methods. 𝑒𝑛𝑡 denotes the total exposure of contract 𝑛 until time
step 𝑡 , while 𝑒∗𝑛𝑡 is its optimal smooth delivery amount until time
step 𝑡 , as reflected by the perfect smoothness line. Based on this,
the smoothness of a contract is denoted as: 𝜎𝑛 (𝑡) =

𝑒𝑛𝑡 −𝑒∗𝑛𝑡
𝑒∗𝑛𝑡

. We
choose the 25-th, 50-th, 75-th, and 95-th percentiles of the sorted
𝜎𝑛 (𝑡) (𝑡 ∈ [0,𝑇]) to show the smoothness of different methods. The
quantitative results of smoothness are shown in Table 5. The main
observation is that most agents in HMARL have exposures close to
the optimal smooth ones because it is with the smallest 𝜎75 and 𝜎50

compared to other methods. While for most ads, HMARL achieves
better smoothness performance than that of the other methods, it
encounters worse values in the 95-th and 25-th percentiles. This
phenomenon might be attributed to the fact that HMARL tries
to coordinate all the ads, in which some ads with more future
impressions will be delayed to display (smaller 𝜎25) and some ads
will be allocated to more impressions (larger 𝜎95) so as to make
way for some other competition ads with more future impressions.

5 CONCLUSIONS
In this paper, we formulate the problem of large-scale GDAs allo-
cation as a multi-agent reinforcement learning setting. Based on
this formulation, we propose the hierarchical multi-agent reinforce-
ment learning framework, which consists of a manager policy and
a set of sub-policies. The hierarchies defined over agents enable the
sharing of sub-policies across large-scale agents to handle their het-
erogeneous states. Extensive experiments on three large real-world
datasets demonstrate the effectiveness of the proposed framework.

Hierarchical Multi-Agent Reinforcement Learning for Allocating Guaranteed Display Ads SIGIR ’21, July 11–15, 2021, Online

REFERENCES
[1] 2019. eMarketer. https://www.emarketer.com/content/emarketer-total-media-

ad-spending-worldwide-will-rise-7-4-in-2018. Accessed: 2010-02-04.
[2] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. 2014. A dynamic near-optimal

algorithm for online linear programming. Operations Research (2014), 876–890.
[3] Sanjeevan Ahilan and Peter Dayan. 2019. Feudal Multi-Agent Hierarchies for

Cooperative Reinforcement Learning. arXiv preprint arXiv:1901.08492 (2019).
[4] Karl Johan Åström and Tore Hägglund. 1995. PID controllers: theory, design, and

tuning. Vol. 2.
[5] Ron Berman. 2018. Beyond the last touch: Attribution in online advertising.

Marketing Science 37, 5 (2018), 771–792.
[6] Vijay Bharadwaj, Peiji Chen, Wenjing Ma, Chandrashekhar Nagarajan, John

Tomlin, Sergei Vassilvitskii, Erik Vee, and Jian Yang. 2012. Shale: an efficient
algorithm for allocation of guaranteed display advertising. In KDD. 1195–1203.

[7] Zehong Cao and Chin-Teng Lin. 2019. Reinforcement Learning from Hierarchical
Critics. arXiv preprint arXiv:1902.03079 (2019).

[8] Peiji Chen, Wenjing Ma, Srinath Mandalapu, Chandrashekhar Nagarjan, Jayavel
Shanmugasundaram, Sergei Vassilvitskii, Erik Vee, Manfai Yu, and Jason Zien.
2012. Ad serving using a compact allocation plan. In Proceedings of the 13th ACM
Conference on Electronic Commerce. 319–336.

[9] Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. 2017. Improving Stochas-
tic Policy Gradients in Continuous Control with Deep Reinforcement Learning
using the Beta Distribution. In ICML. 834–843.

[10] Thomas G Dietterich. 2000. Hierarchical reinforcement learning with the MAXQ
value function decomposition. Journal of Artificial Intelligence Research (2000),
227–303.

[11] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S Muthukrishnan. 2009.
Online stochastic matching: Beating 1-1/e. In Foundations of Computer Science,
2009. FOCS’09. 50th Annual IEEE Symposium on. 117–126.

[12] Arlington M Fink et al. 1964. Equilibrium in a stochastic 𝑛-person game. Journal
of science of the hiroshima university, series ai (mathematics) 28, 1 (1964), 89–93.

[13] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras,
Philip HS Torr, Pushmeet Kohli, and Shimon Whiteson. 2017. Stabilising ex-
perience replay for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1702.08887 (2017).

[14] Mohammad Ghavamzadeh and Sridhar Mahadevan. 2004. Learning to com-
municate and act using hierarchical reinforcement learning. In Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems-Volume 3. 1114–1121.

[15] Google. 2011. The arrivals of real-time bidding.
[16] Jayesh KGupta,Maxim Egorov, andMykel Kochenderfer. 2017. Cooperativemulti-

agent control using deep reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems. 66–83.

[17] Ali Hojjat, John Turner, Suleyman Cetintas, and Jian Yang. 2014. Delivering
guaranteed display ads under reach and frequency requirements. In Twenty-
Eighth AAAI Conference on Artificial Intelligence.

[18] Ali Hojjat, John Turner, Suleyman Cetintas, and Jian Yang. 2017. A unified
framework for the scheduling of guaranteed targeted display advertising under
reach and frequency requirements. Operations Research (2017), 289–313.

[19] Nitish Korula, Vahab Mirrokni, and Hamid Nazerzadeh. 2015. Optimizing display
advertising markets: Challenges and directions. IEEE Internet Computing 20, 1
(2015), 28–35.

[20] Jinna Li, Hamidreza Modares, Tianyou Chai, Frank L Lewis, and Lihua Xie. 2017.
Off-policy reinforcement learning for synchronization in multiagent graphical
games. IEEE transactions on neural networks and learning systems 28, 10 (2017),
2434–2445.

[21] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. In NeurIPS. 6379–6390.

[22] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. 2001. Hierar-
chical multi-agent reinforcement learning. In Proceedings of the fifth international
conference on Autonomous agents. ACM, 246–253.

[23] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Indepen-
dent reinforcement learners in cooperative markov games: a survey regarding
coordination problems. The Knowledge Engineering Review (2012), 1–31.

[24] AranyakMehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. 2005. Adwords
and generalized on-line matching. In FOCS. 264–273.

[25] Neville Mehta, Prasad Tadepalli, and A Fern. 2005. Multi-agent shared hierarchy
reinforcement learning. In ICML.

[26] Vahab S Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam. 2012.
Simultaneous approximations for adversarial and stochastic online budgeted
allocation. In SIAM. 1690–1701.

[27] Igor Mordatch and Pieter Abbeel. 2018. Emergence of grounded compositional
language in multi-agent populations. In AAAI.

[28] Ronald Parr and Stuart J Russell. 1998. Reinforcement learning with hierarchies
of machines. In NeurIPS. 1043–1049.

[29] Doina Precup. 2000. Temporal abstraction in reinforcement learning. University
of Massachusetts Amherst.

[30] Jason Rhuggenaath, Alp Akcay, Yingqian Zhang, and Uzay Kaymak. 2019. Opti-
mal display-ad allocation with guaranteed contracts and supply side platforms.
Computers Industrial Engineering 137 (2019), 106071.

[31] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic Policy Gradient Algorithms. In ICML.

[32] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence (1999), 181–211.

[33] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In ICML. 330–337.

[34] Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hang-
tian Jia, Chunxu Ren, Yan Zheng, Changjie Fan, and Li Wang. 2018. Hierarchical
Deep Multiagent Reinforcement Learning. In AAAI.

[35] Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmugasundaram. 2010. Optimal
online assignment with forecasts. In Proceedings of the 11th ACM conference on
Electronic commerce. 109–118.

[36] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. 2017. FeUdal Networks for
Hierarchical Reinforcement Learning. In ICML. 3540–3549.

[37] Jun Wang and Shuai Yuan. 2015. Real-time bidding: A new frontier of com-
putational advertising research. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining. 415–416.

[38] Chao Yu, Minjie Zhang, Fenghui Ren, and Guozhen Tan. 2015. Emotional mul-
tiagent reinforcement learning in spatial social dilemmas. IEEE transactions on
neural networks and learning systems 26, 12 (2015), 3083–3096.

[39] Weinan Zhang, Shuai Yuan, and Jun Wang. 2014. Optimal real-time bidding for
display advertising. In KDD. 1077–1086.

https://www.emarketer.com/content/emarketer-total-media-ad-spending-worldwide-will-rise-7-4-in-2018
https://www.emarketer.com/content/emarketer-total-media-ad-spending-worldwide-will-rise-7-4-in-2018

	Abstract
	1 Introduction
	2 Related Work
	2.1 Allocation of GDAs
	2.2 Multi-Agent Reinforcement Learning
	2.3 Hierarchical Reinforcement Learning

	3 The HMARL Method
	3.1 Problem Formulation
	3.2 HMARL: The Proposed Method
	3.3 Training Algorithm

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Delivery Policies for Comparison
	4.4 Implementation Details
	4.5 Performance Comparison
	4.6 Impact of Different Numbers of Sub-Policies
	4.7 Impact of Different Reward Functions
	4.8 Smoothness Study

	5 Conclusions
	References

