
Hierarchical Reinforcement Learning for Aggregated Search

ABSTRACT
Aggregated search aims at integrating multi-sources results into
one Search Engine Result Page(SERP) containing a lot of heteroge-
neous information. In traditional methods there are three subtasks
for the aggregated search: vertical selection, item selection, result
presentation. Independent models are trained to solve these prob-
lems. In this paper, we propose an end-to-end model to jointly
optimize these three subtasks using hierarchical reinforcement
learning (HRL), where the interaction between different subtasks is
fully considered. The whole search process is divided into two-level
RL task. The high-level task for vertical selection, result presenta-
tion and the low-level task for item selection. To strengthen the
communication between the two agents, a self-supervised learning
based state representation method is used to connect the RL agents
and achieves a more effective joint learning. Experimental results
show that our model obtains significant improvements in search
performance metrics.

CCS CONCEPTS
• Information systems → Combination, fusion and feder-
ated search.

KEYWORDS
aggregated search, search ranking, hierarchical reinforcement learn-
ing

In recent years, search engines have changed from only providing
blue-links and texts to offering more diversified, professional and
complete search results, in order to allow users to obtain richer in-
formation in one search. The demands of searching in a specialized
field is met by vertical search systems such as Youtube for video,
arXiv for academic papers. And the aggregated search systems are
to aggregate heterogeneous information from different verticals
to construct search result pages(SERP). Figure 1 shows a SERP for
"search engine" from a modern search engine, including encyclo-
pedia vertical, video vertical and news vertical to satisfy different
needs.

Aggregated search task are typically divided into three sequen-
tial subtasks: vertical selection, item selection and result presentation.
Vertical selection decides which specific areas of content from the
feasible verticals to be presented. Item selection is to select the most
relevant items in the chosen verticals to form blocks containing ho-
mogeneous content. result presentation is to present the composed
blocks on the page in a reasonable way. In the traditional approach,
the above subtasks are solved separately using independent models

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DRL4IR ’21, July 15, 2021, Virtual Event
© 2021 Copyright held by the owner/author(s).

Figure 1: a SERP example for the query "search engine". The
items from different verticals including encyclopedia, video,
news are aggregated with general blue-link items in this
SERP.

in a pipeline. Although much effort has been spent on improving
the performance of individual subtasks, the correlation between
subtasks has not been fully considered. Not only does the selection
of the vertical affects the item selection and result presentation,
selected items also have an impact on the selection of the subse-
quent verticals and items. In Figure 1, for example, if there are a
lot of news-related videos in the video vertical, it might be a better
choice to choose a vertical that contains different information than
the news vertical.

To address the above issue, we formalize the aggregated search
problem as a hierarchical Markov Decision Processes (MDPs). The
MDP-based approach, which has been widely used in the field
of information retrieval [19, 21] in recent years, constructs the
ranking as a decomposable process. At each time step, the model
selects a document for the current position, which makes it possible
to consider the impact of each decision step on all subsequent
decisions. Hierarchical MDPs, on the other hand, decomposes a
complex, compound task into MDPs of different granularity. Coarse-
grained, high-level MDPs are responsible for overall tasks, while
fine-grained, low-level MDPs are responsible for detailed problems.
The high-level MDPs guide the low-level MDPs to make decisions
and receive feedback from the low-level MDPs at the same time. The
MDPs at different levels influence each other and jointly optimize
to obtain the optimal solution of the whole problem.

When constructing Hierarchical MDP for aggregated search
framework, the above three subtasks can be decomposed into two
level MDPs. The high level MDP, called vertical selector, decides

DRL4IR ’21, July 15, 2021, Virtual Event

which vertical item should be placed in each block, and is in fact
responsible for vertical selection and result presentation. The low
level MDP, called item selector, selects the items from the chosen
vertical and sorts them into a block, and is actually in charge of
item selection. Policy gradient Hierarchical Reinforcement Learning
(HRL) with option framework [16] is used to solve the problem.
To smooth the communication between the two components, we
additionally devise a special way of state representation for the item
selector. Long Short-Term Memory (LSTM) [8] is used to bring in
information about the items selected by the item selector. However,
training the HRL and LSTM simultaneously using the reward signal
alone may lead to an inadequate training of the LSTM. To address
this issue, an additional signal is provided using self-supervised
learning for joint optimization of HRL and state representations.

In summary, this paper makes the following contributions:
• Wemodel aggregated search framework in a novel hierarchi-
cal end-to-end format. The high level for vertical selection
and result presentation, while the low level for item selec-
tion.
• We introduce hierarchical reinforcement learning to solve
this problem. In addition, self-supervised learning based state
representation methods are used to strengthen the associa-
tion of different subtasks.

1 RELATEDWORK
1.1 Aggregated Search
Aggregated search can be defined as the integration of search results
from various vertical search engines to form a search result page
containing various heterogeneous information. Many studies have
been done focusing on its subtasks: vertical selection, item selection,
result presentation.

Vertical Selection is often seen as a classification problem [9,
13], and a binary classifier is used to decide whether the vertical
should be displayed on the SERP. Different types of features are used
to express different characteristics of vertical. Both the strongly
supervised signal of the ground truth of human judges [3]and the
weakly supervised signal obtained based on user behavior [12] can
be used for the training of the classifier.

Both Item Selection and Result Presentation can be consid-
ered as the problem that rank candidate sets. Therefore a variety
of learning to rank methods can be used to solve these two sub-
tasks. Both pointwise [2, 12] and pairwise [2] ranking functions are
used to determine the selection of the items and the layout of the
pages. In further, the recent study adapted an MDP-based method
[10] that focuses on the association of context information with
result presentation. This method draws on the previous modeling
approach of using reinforcement learning for ranking, adding con-
text attention and representation learning of context information
for optimization.

1.2 Reinforcement Learning
Reinforcement learning (RL) [15] is a way for an agent to learn
by "trial and error". The rewards gained from interacting with the
environment guide the agent’s behavior and enable the agent to
accomplish a specific goal. Today, reinforcement learning is widely
used, including in the field of information retrieval. [19] and [21]

Figure 2: The hierarchical architecture for aggregated
search. The high-level vertical selector is responsible for se-
lecting verticals sequentially. Once a vertical is selected, the
control is handed to item selector, whose task is to select
the appropriate items from the candidate set belonging to
selected vertical and form a block.

model the ranking problem as a sequential decision problem and
use reinforcement learning to improve the relevance and diversity
of the ranking, respectively. In E-commerce, multi-scene search [7]
and session-based aggregated search [18] are separately solved with
multi-agent RL and HRL. Among them, session-based aggregated
search has similarities with our scenario. It also aims to generate
SERPs containing heterogeneous information, but the difference is
that instead of generating only one page for each query, the model
has to perform continuous page generation in a session according
to the user’s click behaviors.

Recently, HRL has also gained a lot of popularity, especially
the option framework. It has been successful in many application
scenarios by decomposing complex tasks with predefined subtasks
of various granularities. In addition to the information retrieval
mentioned above, HRL is also useful in relationship extraction [17],
MOOC course recommendation [23], and task-oriented dialogues
[14]. However, to our best knowledge, we are the first time to use
HRL for aggregated search in web search, focusing on integrating
the traditional pipeline paradigm into a unified end-to-end model.

2 MAIN APPROACH
We propose a deep hierarchical reinforcement learning model for
aggregated search. This model has three components: a high-level
RL for vertical selector, a low-level RL for item selector, and
a self-supervised state representation module that connects the
two RLs. As shown in Figure 2, vertical selector is responsible for
selecting the verticals sequentially, while item selector is responsi-
ble for selecting the appropriate items in order from the verticals
selected by vertical selector. In this section, we will first introduce
the problem definition, followed by the description of the three
parts separately.

Hierarchical Reinforcement Learning for Aggregated Search DRL4IR ’21, July 15, 2021, Virtual Event

2.1 Preliminaries
2.1.1 Aggregated Search. We consider the following setting: The
goal of aggregated search is to construct a search result page (SERP)
of specified length containing results from different verticals for
query 𝑞. Verticals are predefined and denoted as 𝑉 = {𝑣0, 𝑣1, ..., 𝑣 𝐽 }
including the general vertical 𝑣0 that contains only traditional blue-
link items, also called general web items, as well as other verticals
𝑣1, 𝑣2, ..., 𝑣 𝐽 containing a variety of heterogeneous information. The
items in vertical 𝑣 𝑗 is denoted as 𝑋 𝑗 = {𝑥1𝑗 , 𝑥

2
𝑗
, ..., 𝑥 𝐼

𝑗
}. Each vertical

𝑣 𝑗 corresponds to multiple search engines, called resource, and
denoted as 𝑅 𝑗 = {𝑟 𝑗,1, 𝑟 𝑗,2, ..., 𝑟 𝑗,𝐾 }. Given query 𝑞, each resource
𝑟 𝑗,𝑘 returns the items 𝑋 𝑗,𝑘 = {𝑥1

𝑗,𝑘
, 𝑥2
𝑗,𝑘
, ..., 𝑥 𝐼

𝑗,𝑘
} for query q, which

constitutes the candidate set 𝑋 .
Based on the reality, we have made the following assumptions

about the results page:
• An aggregated search page 𝑃 consists of a set of blocks 𝐵 =

{𝑏1, 𝑏2, ..., 𝑏𝑁 }.
• Each block consists of one general web item 𝑥𝑖0,𝑘 or other
vertical items no more than𝑚.
• The items that make up each block 𝑏𝑛 can only come from
one vertical.
• Except for the general web block, the same type of block can
only appear once per page.

Take Figure 2 as an example. The first three blocks of the SERP are
video block, general web block and news block. Video block and
news block are composed of three items from different resources,
while general web block only includes one general web item.

2.1.2 Options Framework. Options framework, an important branch
of HRL, is an extension to solve the usual MDPs. Usual MDPs can
be defined as < S,A,P, 𝑟 >. S represents the state space covering
all possible states of the agent. A denotes the action space, which
contains all the actions the agent can take. P : S ×A × 𝑆 → [0, 1]
denotes the state transition function, which reflects the process
of generating the next state 𝑠𝑡+1 after an action 𝑎𝑡 is taken by the
agent at a state 𝑠𝑡 . 𝑟 : S × A × 𝑆 → R is the reward function,
similar to P, except that it returns a reward for current state-action
pair. Policy 𝜋 : S × A → [0, 1] decides which action 𝑎𝑡 is taken
in the state 𝑠𝑡 . The goal of RL is to find an optimal policy 𝜋∗ to
maximizes the expected cumulative reward, also known as return
𝑅𝑡 = E[

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘], where 𝛾 ∈ [0, 1] is a discount factor.
The options framework takes into account the action space with

different time granularity in addition to the usual MDP. At each
time step, the agent can either choose a primitive action or an
option. An option 𝑜 ∈ O is a triple (I𝑜 , 𝜇𝑜 , 𝛽𝑜), in which I𝑜 is an
initation set, 𝜇𝑜 is an intra-option policy, 𝛽𝑜 : S → [0, 1] is a
termination function. When the agent select an option 𝑜𝑚 , a sub-
MDP is launched. Sub-MDP starts with the state 𝑠 ∈ I𝑜𝑚 as the
initial state. Primitive actions 𝑎𝑜𝑡 ∈ A𝑜𝑡 are sampled from policy
𝜇𝑜𝑚 to form a sub-trajectory 𝜏𝑜𝑡 , until the termination function
𝛽𝑜𝑚 terminates the sub-MDP. Only when the sub-MDP terminats,
the new option 𝑜𝑚+1 can be selected.

2.2 Vertical Selector With High-level RL
The goal of the vertical selector is to sequentially determine which
verticals should be displayed on the result page. At each time step

𝑡 , the high-level RL agent needs to select an option 𝑜𝑡 based on
policy 𝜋 to decide which vertical should be placed for the current
position. Once an option 𝑜𝑡 is selected, a subtask is launched for
the low level RL to decide which items should be included in the
block for the selected vertical and how they would be arranged.

Option: O(𝑠ℎ
𝑇
) is all the options available to the agent in state 𝑠ℎ

𝑇
.

Since the blocks of the same kind cannot be repeated in a page, the
size of option set |O| is decreasing, and if there are 𝑁 predefined
verticals, |O| ≤ 𝑁 . 𝑜𝑇 ∈ O(𝑠ℎ𝑇) selects the appropriate vertical for
the position 𝑡 . The vertical selected by 𝑜𝑇 is denoted as 𝑣 (𝑜𝑇). When
the high level RL agent selects the option, the control is handed over
to the low level RL agent. As the low level MDP ends, the control
is returned and the selection of the next option is proceeded.

State: The high-level RL state is denoted as 𝑠ℎ
𝑇
∈ 𝑆 , which can

be formulated as a triple 𝑠ℎ
𝑇

= {𝑞,O𝑇 ,D𝑇 }. 𝑞 is the query; O𝑡 =

{𝑜0, 𝑜1, ..., 𝑜𝑇 } is the options selected so far; D𝑇 = {𝑋𝑣 (𝑜0) , 𝑋𝑣 (𝑜1) ,
..., 𝑋𝑣 (𝑜𝑇) } denotes the global partial ranking list so far, where the
items are selected by the low-level agent.To keep the state dimen-
sion constant, LSTM is used for state representation. Its design and
training method will be explained in section 3.4. The initial state
𝑠ℎ0 = {𝑞, ∅, ∅}. The process terminated when the ranking list D𝑇
reaches the target length.

Extrinsic reward: The extrinsic reward 𝑟ℎ is given to reflect how
relevant the vertical chosen by vertical selector is to query 𝑞, how
well the vertical is sorted, and how well the item is sorted in the
whole page. Therefore, we use the F1 of vertical selection, the cumu-
lative gain-basedmetric NDCG (normalized Discounted Cumulative
Gain) [11] and NDCG-IA metrics [1] as the reward signal, where
NDCG-IA is the derivative of NDCG, considering both the diversity
and relevance of the page content. To avoid sparse rewards, we
use the increment of these two metrics during the option 𝑜𝑡 as the
reward signal, which can be formulated as:

𝑟ℎ𝑇 = 𝛼 × (F1𝑇 − F1𝑇−1)

+ 𝛽 × (NDCG-IAℎ𝑇 − NDCG-IA
ℎ
𝑇−1)

+ (1 − 𝛼 − 𝛽) × (NDCGℎ𝑇 − NDCG
ℎ
𝑇−1)

(1)

where 𝛼 and 𝛽 illustrate the importance of different metrics.
REINFORCE, a typical policy gradient RL method, is used in

vertical selector. The update of the policy network can be calculated
as:

𝜃 ← 𝜃 + 𝛼ℎ∇𝜃 log𝜋𝜃 (𝑜𝑇 |𝑠ℎ𝑇)𝐺
ℎ
𝑇

(2)

where 𝜋𝜃 denotes the vertical selection policy parameterized with
𝜃 ,𝐺𝑡 denotes the cumulative return of the episode, and 𝛼ℎ denotes
the learning rate of the high-level RL policy network.

2.3 Item Selector With Low-level RL
The goal of the item selector is to decide which items should be cho-
sen in the block and how should they be presented. Inspired by the
success of MDP-based models in ranking tasks, we formalized the
item selection problem as a MDP in a similar with these model.Each
time step corresponds to a ranking position, and a primitive action
is taken for each time step to select a item for current position.

DRL4IR ’21, July 15, 2021, Virtual Event

Primitive action: A primitive action 𝑎𝑇,𝑡 ∈ A selects a item 𝑥

from a candidate set. The candidate set includes the search results
for query 𝑞 returned by the resources 𝑟𝑣 (𝑜𝑇) corresponding to the
selected vertical 𝑣 (𝑜𝑇). The index of the item selected by 𝑎𝑇,𝑡 is
denoted as 𝐼 (𝑎𝑇,𝑡)

State: The low-level RL state is denoted as 𝑠𝑙
𝑇 ,𝑡
∈ 𝑆 , which can

be formulated as 𝑠𝑙
𝑇 ,𝑡

= {𝑞, 𝑜𝑇 ,Z𝑡𝑣(𝑜𝑇) ,X
𝑡
𝑣(𝑜𝑇)
}. 𝑞 is the query; 𝑜𝑇

denotes the option that launches the current subtask;Z𝑡
𝑣(𝑜𝑇)

is the
partial ranking list for the block so far; and X𝑡

𝑣(𝑜𝑇)
is the candi-

date set. The initial state is 𝑠𝑙
𝑇 ,𝑡

= {𝑞, 𝑜𝑇 , ∅, 𝑋 }. And the transition
function is as follows:

𝑠𝑙𝑇 ,𝑡+1 = P(𝑠
𝑙
𝑇 ,𝑡 , 𝑎𝑇,𝑡)

= [𝑞, 𝑜𝑇 ,Z𝑡𝑣(𝑜𝑇) ⊕ 𝐼 (𝑎𝑇,𝑡),X
𝑡
𝑣(𝑜𝑇)\𝐼 (𝑎𝑇,𝑡)]

(3)

The selected item is appended to the ranking list and removed from
the candidate set. The process terminates when either the global
ranking list D𝑇 reach the target length, or the ranking listZ𝑡

𝑣(𝑜𝑇)
in the block reach the length limit of the block, or the candidate set
X𝑡
𝑣(𝑜𝑇)

is empty.

Intrinsic reward: Unlike the high-level agent that focuses on the
global picture, the low-level agent only focuses on the ranking of
the current block. Therefore, NDCG of the current block is used to
measure the quality of the ranking.To avoid sparse reward, at each
time step, the increment of NDCG is given to the low-level agent
as the reward signal, which can be formulated as:

𝑟 𝑙𝑇 ,𝑡 = NDCG𝑙𝑇 ,𝑡 − NDCG
𝑙
𝑇 ,𝑡−1 (4)

Similar to high-level RL, REINFORCE also used to solve the item
selection problem. The update of the policy network can be written
as:

𝜙 ← 𝜙 + 𝛼𝑙∇𝜙 log 𝜇𝜙 (𝑎𝑇,𝑡 |𝑠𝑙𝑇 ,𝑡)𝐺
𝑙
𝑇 ,𝑡

(5)
where 𝜇𝜙 denotes the item selection policy parameterized with 𝜙 ,
𝐺𝑇,𝑡 denotes the cumulative return of the episode, and 𝛼𝑙 denotes
the learning rate of the low-level RL policy network.

2.4 Self-supervised State Representation
Learning

As we mentioned in INTRODUCTION, our approach is mainly
designed to solve the problem of conventional pipeline structure
where models are trained separately for different phases, without
considering the correlation between them. Therefore, how to con-
nect the high-level and the low-level RL agents is also the focus of
our work. It is expected that while the vertical selector can guide
the item selector, the items selected by low-level RL agent can also
have an impact on the subsequent vertical selection. Thus, a state
representation module is designed to deliver low-level information
to high-level agent.

Figure 3 shows how the agents communicate with each other.
When an option 𝑜𝑇 is selected at 𝑇 , the control is handed over
to the item selector. At each time step 𝑡 for low-level MDP, the
agent sample a privmitive action according to its policy and decides
which item would be selected for the position 𝑡 . The embedding
of the selected item concatenated with query and the previous

Figure 3: Illustration of how the agents communicate with
each other and how they communicate with environment.
This figure shows the interaction process within an option

selected option is input to the LSTM model and aggregated with
the previously selected item. When the low-level terminates at 𝑡 +𝑘 ,
the hidden stateℎ𝑇,𝑡+𝑘 becomes the next state 𝑠ℎ

𝑇+1 of the high-level
RL agent.

The LSTM is formulated as:
𝑖𝑇,𝑡 = 𝜎 (𝑊 (𝑖)𝑥𝑇,𝑡 +𝑈 (𝑖)ℎ𝑇,𝑡−1)

𝑓𝑇,𝑡 = 𝜎 (𝑊 (𝑓)𝑥𝑇,𝑡 +𝑈 (𝑓)ℎ𝑇,𝑡−1)

𝑒𝑇,𝑡 = 𝜎 (𝑊 (𝑒)𝑥𝑇,𝑡 +𝑈 (𝑒)ℎ𝑇,𝑡−1)

�̃�𝑇,𝑡 = tanh(𝑊 (𝑐)𝑥𝑇,𝑡 +𝑈 (𝑐)ℎ𝑇,𝑡−1)
𝑐𝑇,𝑡 = 𝑓𝑇,𝑡 ⊙ 𝑐𝑇,𝑡−1 + 𝑖𝑇,𝑡 ⊙ �̃�𝑇,𝑡
ℎ𝑇,𝑡 = 𝑒𝑇,𝑡 ⊙ tanh(𝑐𝑇,𝑡)

(6)

where 𝑥𝑇,𝑡 = [𝑞, 𝑜𝑇 , 𝐼 (𝑎𝑇,𝑡)].𝑖𝑇,𝑡 ,𝑓𝑇,𝑡 ,𝑒𝑇,𝑡 ,𝑐𝑇,𝑡 , ℎ𝑇,𝑡 denote input
gate, forget gate, exposure gate, cell state, hidden state.𝑊 , 𝑈 are
learnable parameters. When 𝑡 = 0, the last cell state 𝑐𝑇,𝑡−1 and the
last hidden state ℎ𝑇,𝑡−1 come from the previous option.

𝑐𝑇,𝑡−1 = 𝑐𝑇−1,𝑡+𝑘
ℎ𝑇,𝑡−1 = ℎ𝑇−1,𝑡+𝑘

(7)

where 𝑘 is the total time step in the previous option. Given that
the LSTM may not be adequately trained using only the reward
signal, we designed the self-supervised learning method similar to
auto-encoder as a supplement.

As shown in 4, the state representation module is considered as
an encoder, while an additional LSTM network is built as a decoder
to reconstruct the input of the encoder as accurately as possible.
The loss function can be formulated as:

𝐿(𝛿𝑒𝑛, 𝛿𝑑𝑒) =
𝐾∑
𝑘=0
(𝑥𝑇,𝑘 − ℎ𝑑𝑒𝑘)

2 (8)

where 𝛿𝑒𝑛 and 𝛿𝑑𝑒 denote the network parameters of encoder and
decoder respectively, 𝐾 is the length of the sequence, 𝑥𝑇,𝑘 is the
𝑘th input of the enoder, and ℎ𝑑𝑒

𝑘
denotes the 𝑘th hidden state of the

decoder.

Hierarchical Reinforcement Learning for Aggregated Search DRL4IR ’21, July 15, 2021, Virtual Event

Figure 4: The auto-encoder structure for training the state
representation module

Since the state representation module is closely related to High-
level RL policy network, the two need to be trained jointly. There-
fore, two training methods are proposed, the first one is alternative
training and the second one is training with a hybrid loss function.
For the former, the RL policy network and the auto-encoder are
alternately trained and updated with their respective loss functions.
For the latter, these networks are concurrently updated using a
unified loss function with two components.The loss function can
be formulated as:

𝐿(𝜃, 𝛿𝑒𝑛, 𝛿𝑑𝑒) = log𝜋𝜃 (𝑜𝑇 |𝑠ℎ𝑇)𝐺
ℎ
𝑇 + 𝛽𝑟𝑒𝑝

𝐾∑
𝑘=0
(𝑥𝑇,𝑘 − ℎ𝑑𝑒𝑘)

2 (9)

where 𝛽𝑟𝑒𝑝 denotes the weight of loss of representation network.
These two methods offer their own advantages. The alternative

training approach avoids adjustment of parameter 𝛽𝑟𝑒𝑝 and is more
robust, while training with hybrid loss function introduces the
extrinsic reward from the environment as an additional supervisory
signal, which is beneficial for the state representation network
training. An analysis of the advantages and disadvantages of these
two training methods can be found in the experimental section.

3 EXPERIMENTS
3.1 Experiment Setting
3.1.1 Dataset. The experiments are conducted on two public dataset:
FedWeb13 and FedWeb14 [6] derived from the TREC federated web
search track in 2013 and 2014. Each year, 50 queries are sent to over
150 sub-engines, called resources, belonging to 24 verticals. The ex-
ample verticals and sub-engines are shown in Table 1 .The snippets
and web-pages of up to 10 returned results from the sub-engines are
gathered. Five-graded relevance score are given by human judges
for every returned results.

3.1.2 Features and parameter Settings. To ensure the fairness of
the experiments, we use the gensim’s doc2vec model to encode the
queries and title of the items as their features. And the features of
verticals are obtained by calculating the mean value of the item
features belonging to the vertical. The doc2vec model is pre-trained
with all the textual information of the dataset.

In order to reduce the dimensionality of the state of the low-level
RL and save computation time, we do not include all the returned

Vertical Resources # Resources
Academic arXiv.org, CCSB 17
Video YouTube, Comedy Central 11
Photo/Pictures Flickr, Getty Images 11
Health Health Finder, HealthCentral 11
Shopping Amazon, eBay 10
News BBC, CNN 10
...
Books Goodreads, Google Books 2
Local Foursquare 1

Table 1: Examples of verticals and resources

Hyper-parameter Vertical Selector # Item Selector
Learning rate 1e-5 1e-5
Optimization algorithm Adam Adam
Policy network layer size 2 3
Hidden size 128 128
Discount factor 0.99 0.99
Doc2vec feature size 100 100
Weight factor 𝛼 in Eq.1 0.5 -
Length of the SERP 20 -
Length of the block - 3
Candidate items - 20

Table 2: Hyper-parameter Setting

results from sub-engines when constructing the candidate set for
item selector, but use the top 20 items of the returned list.

The policy gradient method: REINFORCE [20] is used for both
the high and low level agent, and MLP is used as the policy network.
The parameter settings for the vertical selector and the item selector
are providing in Table 2.

As for the network 𝜙 in self-supervised state representation
learning, we used a two layer MLP with activate function. The
self-supervised learning method and the HRL trained alternately,
with training parts exchanged every 1000 episodes.

For each experiment, we perform 5-fold cross validation. For all
methods that include RL, the number of episodes trained by the RL
agent is the same.

3.1.3 Baselines and Evaluation Metrics. To validate the effective-
ness of our proposed approach, we implemented several three-stage
methods for comparison. The details of the baselines are introduced
as follows:

BC + ISLTR + RPLTR:. a traditional pipeline for aggregated search
framework. For vertical selection, a two layer MLP is used as
the binary classifer to decide which vertical should be presented
in the page. For item selection and result presentation, it uses
learning-to-rank (LTR) method. We selected two representative
algorithms: RankNet [4] and LambdaRank [5], which are pair-wise
LTR and list-wise LTR respectively and are implemented with
pytorch [22]. The baseline with RankNet is denoted as BC + IS-
RankNet + RPRankNet, while the baseline with LambdaRank is
denoted as BC + ISLambdaRank + RPLambdaRank

DRL4IR ’21, July 15, 2021, Virtual Event

Method NDCG@10 NDCG@20 NDCG-IA@10 NDCG-IA@20
BC + ISRankNet + RPRankNet 26.47 26.18 5.78 6.76
BC + ISLambdaRank + RPLambdaRank 29.16 27.39 6.48 7.07
High-level RL + ISRankNet 20.14 24.72 4.75 6.84
High-level RL + ISLambdaRank 21.20 25.31 4.97 6.72
BC + Low-level RL + RPRankNet 23.00 24.62 4.94 6.46
BC + Low-level RL + RPLambdaRank 22.91 22.12 4.85 5.58
HRL 25.38 25.64 6.34 8.20
HRL(without state representation module) 22.56 24.10 4.99 7.10

Table 3: Performance comparison with baseline on dataset FedWeb13

Method NDCG@10 NDCG@20 NDCG-IA@10 NDCG-IA@20
BC + ISRankNet + RPRankNet 27.89 30.32 7.28 8.95
BC + ISLambdaRank + RPLambdaRank 34.73 33.37 9.09 10.01
High-level RL + ISRankNet 32.83 34.77 8.30 10.19
High-level RL + ISLambdaRank 31.36 34.54 7.81 10.03
BC + Low-level RL + RPRankNet 26.75 29.79 6.32 8.39
BC + Low-level RL + RPLambdaRank 29.54 30.42 6.78 8.21
HRL 40.77 38.69 10.83 12.94
HRL(without state representation module) 35.53 35.35 8.70 10.77

Table 4: Performance comparison with baseline on dataset FedWeb14

High-level RL + ISLTR:. a three-stage method similar to HRL,
which replaces the low-level item selector with LTR method. As
well, two LTR methods: RankNet and LambdaRank are used, which
denoted as High-level RL + ISRankNet and High-level RL +
ISLambdaRank seperately.

BC + Low-level RL + RPLTR:. a three-stage method similar to
HRL, which replaces the high-level vertical selector with other
approachs. The vertical selector is responsible for both vertical
selection and result presentation.Therefore, The binary classifier is
used for vertical selection and L2R is used for result presentation.
they are denoted as BC + Low-level RL + RPRankNet and BC +
Low-level RL + RPLambdaRank.

To evaluate the performance of the algorithm, the evaluation
metrics are as follows:

NDCG:. Normalized Discounted Cumulative Gain, a common
used retrieval metric, which mainly foucs on the relevance of the
selected items to the given query.

NDCG-IA:. intent-aware NDCG, an extension on NDCG, where
the diversity of page content is also taken into account to minimize
the risk of dissatisfication of the average user. It is regarded as the
most important one in all the metrics, and it is also used by the
TREC FedWeb track.

3.2 Results Comparison
3.2.1 ComparisonWith Baselines. To illustrate the proposed model
performance, we compare it with the baseline models. The results
of HRL and baselines in FedWeb13 and FedWeb14 are shown in
Table3 and Table4.

In general HRL achieves better NDCG-IA than all the baselines
in both dataset. Especially in dataset FedWeb14, HRL’s NDCG-
IA@20 exceeds the traditional pipeline BC + ISLTR + RPLTR by
2.75, which shows the efficiency of HRL.

The Comparison betweenBC+ ISLTR+RPLTR,High-levl RL
+ ISLTR andBC + Low-level RL + RPLTR shows that three-stage
method with flat RL can not solve the problem efficiently. Com-
pare to BC + ISLTR + RPLTR, BC + Low-level RL + RPLTR’s
performance has even declined. It is possible that the trained BC
for vertical selection limits the exploration of low-level RL, which
leads to the degradation of the performance. This illustrates that
the performance of different models is similar when solving sub-
tasks. And using the end-to-end HRL model, the three subtasks can
be jointly optimized, and the correlation between the subtasks is
considered to effectively improve the model performance.

To explore the role of state representation module, we also evalu-
ated the performance of HRL without state representation module.
The experimental results show that a well represented state is fa-
vorable to RL learning.

As for the gap between model performance between FedWeb13
and FedWeb14 may be due to the difference between the datasets.
The queries given by Fedweb13 are more ambiguous compared to
Fedweb14, and are related to more vertical. At this point, the low-
level RL needs to adapt to more kinds of vertical and the complexity
has increased.

3.2.2 Comparison Between Different Training Methods. To illus-
trate the effect of the training method of the state representation
module on the performance of the model, we compared model per-
formance under different training methods. The results of different
training methods with different parameter settings are shown in
Table 5 and Table 6.

Hierarchical Reinforcement Learning for Aggregated Search DRL4IR ’21, July 15, 2021, Virtual Event

Method NDCG@10 NDCG@20 NDCG-IA@10 NDCG-IA@20
HRL(without self-supervised learning) 24.26 24.11 5.90 7.35
HRL(alternative training) 24.36 24.62 5.90 7.51
HRL(hybrid loss training, 𝛽𝑟𝑒𝑝 = 0.1) 23.28 23.54 5.30 6.79
HRL(hybrid loss training, 𝛽𝑟𝑒𝑝 = 1) 25.38 25.64 6.34 8.20
HRL(hybrid loss training, 𝛽𝑟𝑒𝑝 = 10) 23.36 24.05 5.80 7.55
Table 5: Performance comparison between different training methods on dataset FedWeb13

Method NDCG@10 NDCG@20 NDCG-IA@10 NDCG-IA@20
HRL(without self-supervised learning) 36.41 35.73 9.50 11.63
HRL(alternative training) 38.07 36.48 9.99 11.94
HRL(hybrid loss training, 𝛽𝑟𝑒𝑝 = 0.1) 40.77 38.69 10.83 12.94
HRL(hybrid loss training, 𝛽𝑟𝑒𝑝 = 1) 37.16 36.23 9.93 11.97
HRL(hybrid loss training, 𝛽𝑟𝑒𝑝 = 10) 37.62 36.46 9.90 11.98
Table 6: Performance comparison between different training methods on dataset FedWeb14

Comparing state representation module trained with and with-
out supplementary self-supervised signal, we found that the addi-
tional signal did form a better state representation, which helped
in RL learning. The best performing model with self-supervised
signal outperformed the model without the signal by about 1.0 on
NDCG-IA@20 metric for both datasets.

Model trained with hybrid loss function was also found perform
better than alternative trained model, which suggests that extrinsic
reward is also an important signal to obtain a state representation
that assists in the training of the RL agent.

However, the training method with hybrid loss function is sen-
sitive to parameter 𝛽𝑟𝑒𝑝 . The experimental results show that dif-
ferenet datasets have different requirments for parameter 𝛽𝑟𝑒𝑝 . For
Fedweb13, the model performs best with 𝛽𝑟𝑒𝑝 = 1, but for Fed-
web14, 𝛽𝑟𝑒𝑝 = 0.1 is the best choice. And if the parameters are not
chosen properly, the model performance will be greatly affected.
For example, in FedWeb13, when 𝛽𝑟𝑒𝑝 = 10, the performance is
even worse than the model without self-supervised learning. In
contrast, the advantage of alternative training is no parameter tun-
ing is required and it is more robust. Therefore, different methods
can be used in different scenarios.

4 CONCLUSION
In this paper, we formulate the aggregated search problem into a
hierarchical end-to-end framework, avoiding training a separate
model for each subtask. Meanwhile, we propose an HRL model con-
sisting of two components: a high-level vertical selector for vertical
selection and result presentation and a low-level item selector for
item selection. A self-supervised learning based state representa-
tion method is used to take full account of the correlation between
subtasks and enhance the communication between the RL agents.
Experimental results on public TREC datasets show that our HRL
method outperforms baseline in evaluation metrics.

Limitations of the proposed method may lie in the features and
the RL algorithm. In our work, the features are obtained simply by
encoding the textual information using doc2vec. Other non-textual
information and heuristic features can be added to improve the

model performance. Further, the state-of-the-art RL algorithm can
also be used within the proposed framework, which is inherently
flexible and compatible with a variety of different RL algorithms. In
addition, due to the shortage of annotation data in the aggregated
search domain, compared to training with full supervision, using
a weak supervised or even unsupervised reward signal may be a
better choice. Hence, the future research will concern designing
reward signals without fully annotated documents and refining the
details of the proposed model.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their detailed review and
thoughtful suggestions. Thiswork is supported by theNSFC projects
(No. 61402403, No. 62072399), Chinese Knowledge Center for En-
gineering Sciences and Technology, MoE Engineering Research
Center of Digital Library, and the Fundamental Research Funds for
the Central Universities.

REFERENCES
[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.

Diversifying search results. In Proceedings of the second ACM international con-
ference on web search and data mining. 5–14.

[2] Jaime Arguello, Fernando Diaz, and Jamie Callan. 2011. Learning to aggregate ver-
tical results into web search results. In Proceedings of the 20th ACM international
conference on Information and knowledge management. 201–210.

[3] Jaime Arguello, Fernando Diaz, Jamie Callan, and Jean-Francois Crespo. 2009.
Sources of evidence for vertical selection. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information retrieval. 315–
322.

[4] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. 89–96.

[5] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with
nonsmooth cost functions. In Advances in neural information processing systems.
193–200.

[6] Thomas Demeester, Dolf Trieschnigg, Ke Zhou, Dong Nguyen, and Djoerd Hiem-
stra. 2015. FedWebGreatest Hits Presenting the NewTest Collection for Federated
Web Search. In Proceedings of the 24th International Conference on World Wide
Web (Florence, Italy) (WWW ’15). ACM, New York, NY, USA.

[7] Jun Feng, Heng Li, Minlie Huang, Shichen Liu, Wenwu Ou, Zhirong Wang,
and Xiaoyan Zhu. 2018. Learning to collaborate: Multi-scenario ranking via
multi-agent reinforcement learning. In Proceedings of the 2018 World Wide Web
Conference. 1939–1948.

DRL4IR ’21, July 15, 2021, Virtual Event

[8] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[9] Dzung Hong, Luo Si, Paul Bracke, Michael Witt, and Tim Juchcinski. 2010. A joint
probabilistic classification model for resource selection. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval. 98–105.

[10] Xinting Huang, Jianzhong Qi, Yu Sun, Rui Zhang, and Hai-Tao Zheng. 2019.
Carl: Aggregated search with context-aware module embedding learning. In 2019
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[11] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[12] Luo Jie, Sudarshan Lamkhede, Rochit Sapra, Evans Hsu, Helen Song, and Yi
Chang. 2013. A unified search federation system based on online user feedback.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1195–1203.

[13] Or Levi, Ido Guy, Fiana Raiber, and Oren Kurland. 2018. Selective cluster pre-
sentation on the search results page. ACM Transactions on Information Systems
(TOIS) 36, 3 (2018), 1–42.

[14] Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee,
and Kam-Fai Wong. 2017. Composite task-completion dialogue policy learning
via hierarchical deep reinforcement learning. arXiv preprint arXiv:1704.03084
(2017).

[15] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[16] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1-2 (1999), 181–211.

[17] Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Minlie Huang. 2019. A hi-
erarchical framework for relation extraction with reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 7072–7079.

[18] Ryuichi Takanobu, Tao Zhuang, Minlie Huang, Jun Feng, Haihong Tang, and Bo
Zheng. 2019. Aggregating e-commerce search results from heterogeneous sources
via hierarchical reinforcement learning. In The World Wide Web Conference. 1771–
1781.

[19] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Reinforce-
ment learning to rank with Markov decision process. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 945–948.

[20] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[21] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2017.
Adapting Markov decision process for search result diversification. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 535–544.

[22] Hai-Tao Yu. 2020. PT-Ranking: A Benchmarking Platform for Neural Learning-
to-Rank. arXiv preprint arXiv:2008.13368 (2020).

[23] Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, and Jimeng Sun. 2019.
Hierarchical reinforcement learning for course recommendation in moocs. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 435–442.

	Abstract
	1 Related Work
	1.1 Aggregated Search
	1.2 Reinforcement Learning

	2 Main Approach
	2.1 Preliminaries
	2.2 Vertical Selector With High-level RL
	2.3 Item Selector With Low-level RL
	2.4 Self-supervised State Representation Learning

	3 Experiments
	3.1 Experiment Setting
	3.2 Results Comparison

	4 Conclusion
	References

