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ABSTRACT
Deep reinforcement learning (DRL) offers natural solutions to inter-
active artificial intelligence (AI) agents, for DRL’s ability of adapta-
tion and exploration. Many existing methods use a search engine’s
retrieval function as their RL agent’s action to retrieve informa-
tion and explore in an information space. What is neglected is
that off-the-shelf retrieval functions are optimized over precision
at top ranks and this would prevent the agent from knowing the
global picture and visiting all areas in the state space. In this pa-
per, we propose to compress an entire text corpus into a global
low-dimensional representation, which grants an agent with global
access to the full state space. We experiment on the Text REtrieval
Conference (TREC) Dynamic Domain (DD) Track and the results
show that our method outperforms the state-of-the-art dynamic
search (DS) systems. A complete version of this paper has been pub-
lished in the Deep Reinforcement Learning Workshop at NeurIPS
2019.
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1 INTRODUCTION
Research in interactive artificial intelligence (AI) agents aims to
make the agents assist a human user to accomplish a goal-oriented
task [7, 12, 20]. Deep reinforcement learning has been applied to
interactive AI agents. Prior work on this topic has investigated the
use of bandits-based [7], value-based [17], and policy-based [9] RL
methods. Many interactive agents are retrieval-based systems. It
means, they often use a search engine to retrieve documents and
this forms the RL agents’ actions to explore in an information space.
The retrieval-based interactive systems include multi-turn Question
Answering (QA) [12], dialogue systems [3], and dynamic search
systems [20].

These systems share similar designs. The environments often
consist of a repository of documents (or knowledge) and a human
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user. Also, the agents’ actions often include two steps. The first is
to reformulate a new query or ask a new question, based on user
responses. The second is to retrieve relevant information to those
queries via some off-the-shelf retrieval tools.

Such a pipeline is a convenient use of existing search engine tech-
niques. However, most existing retrieval functions are optimized
over precision at top ranks, which is determined by a human’s
limited cognitive load when examining the results. This bias is en-
graved in almost all ready-to-use retrieval tools. The effect is that
results that are good but not as optimal would be difficult to show
up. It is thus difficult for the agent to be aware of the global picture
of the state space, for the search is so restricted by the top results.
This is different from how an RL agent is treated in AI, where the
agent is always aware of the global status, e.g. AlphaGo knows
the game board. The inadequate knowledge of the global picture
makes the learning of the RL agent quite difficult because the agent
could not “explicitly consider the whole problem of a goal-oriented"
process [16].

In this paper, we propose to create a global representation to
encode an entire natural language corpus, enabling the RL agent
to gain access to full state space. Using dynamic search (DS) as
an illustrating example, we present a deep reinforcement learning
framework that can be used in natural language environments for
interactive AI agents.

One option to produce natural language (NL) global representa-
tion is Doc2vec [6]. It has been used to construct corpus-level repre-
sentation in deep learning. Doc2vec transforms a high-dimensional
discrete representation of documents into low-dimensional con-
tinuous vectors by predicting the central word with its neighbor-
ing words and the corresponding document vector. Unfortunately,
however, doc2vec could not be able to solve a problem known as
crowding [1]. Crowding refers to the situation where multiple high-
dimensional data points are collapsed into one after dimension
reduction. It suggests that if two data points belong to two different
classes, after collapsing it would be impossible to tell them apart.
In our case where each data point represents either a relevant or
irrelevant document, this would be an issue.

Therefore, in this paper, we propose a different solution to retrieval-
based interactive agents. In our corpus-level end-to-end exploration
algorithm (CE3), at each time step, a text corpus is compressed into
a single global representation and used to support full exploration
in the entire state space.

Experiments on the Text REtrieval Conference (TREC) Dynamic
Domain 2017 Track demonstrate that our method significantly
outperforms previous DS approaches. It is also shown that our
method is able to quickly adjust search trajectories and recover
from losses in early interactions. Given the fundamental issues
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that it addresses, we believe CE3’s success can be extended to
other interactive AI systems accessing information with retrieval
functions.

2 RELATEDWORK
Knowing a global model that oversees an entire document collection
has shown substantial benefits in traditional IR. For instance, corpus-
level clusters was developed via K-means in [8] or Latent Dirichlet
Allocation (LDA) [19] to improve retrieval scores. In this paper,
we encode the content of the entire corpus and the user’s search
history into a global state representation.

KB-InfoBot [3] is a dialogue-based system to find movies from a
large movie knowledge base (KB). Similar to us, KB-InfoBot used
global representation for all movies to represent the states. To do
so, it estimated the target movie by modeling a global distribution
over the entire set of movie entities. The difference is that their
work is for data stored in a structural database and our work is for
largely available natural language free texts.

Many great breakthroughs in Natural Language Processing (NLP)
are built upon word2vec [11]. Its derivation doc2vec [6] trans-
forms high-dimensional discrete representation of documents into
low-dimensional continuous vectors. It maximizes the following
log probability: 1

𝐾𝑇

∑𝐾
𝑘=1

∑𝑇−𝑚
𝑡=𝑚 log 𝑝 (𝑤𝑘,𝑡 |𝑤𝑘,𝑡−𝑚, ...,𝑤𝑘,𝑡+𝑚, 𝑣𝑘 )

where 𝑣𝑘 is the document vector of the 𝑘𝑡ℎ document and𝑤𝑘,𝑡 is the
vector of the 𝑡𝑡ℎ word in the 𝑘𝑡ℎ document. The document vector
𝑣𝑘 is a compressed low dimensional representation that seems de-
sirable. It is initialized randomly and optimized via self-supervision.
However, the optimization goal does not put constraints on its
post-optimization distribution. Thus, doc2vec would not be able to
solve the crowding problem [1]. In our experiments, doc2vec per-
forms poorly. Instead, we choose to use the t-Distributed Stochastic
Neighbor Embedding (t-SNE) method [10].

3 THE APPROACH
In this paper, we propose to compress an entire text corpus into a
global low-dimensional representation and keep it around all the
time. In this way, we can then enable an RL agent to gain accesses
to the full state space. It is essential for an RL agent because not
being able to reach documents in under-explored areas would mean
not being able to recover from early bad decisions. We summarize
our procedure of creating the global representation into three steps.

First, each document is split into topic-coherent segments. The
latest advances inNeural Information Retrieval (NeuIR) have demon-
strated the effectiveness of exploiting topic structures [18]. In this
work, we follow [18] for segmenting and standardizing documents.
Each document is first segmented into topical coherent blocks then
standardized to has a fixed 𝐵 number of segments.

Second, each segment is compressed into a much lower dimen-
sion 𝑛 (𝑛 ≪ 𝑊 ). Bag-of-Words (BoW) is used as feature vector
for a segment and is of the same size as the vocabulary (𝑊 ). One
challenge is that after the compression the documents would be
crowded and it would be difficult to tell apart the relevant docu-
ments from the irrelevant ones. To address this issue, We employ
t-SNE [10] for dimension reduction.

Assume the high-dimensional input 𝒙∗ ∈ R𝑊 follows the Gauss-
ian distribution and there are two random input data points 𝒙𝑖 and

Figure 1: Global representation of a toy corpus (of 5 docu-
ments): Documents are segmented and standardized follow-
ing [18]. Similar colors suggest similar contents. Document
2 is darkened after being visited. Document 4 is currently
selected by the RL agent and highlighted with white.

𝒙 𝑗 . The probability that 𝒙𝑖 and 𝒙 𝑗 are neighboring to each other

is 𝑝 (𝒙𝑖 , 𝒙 𝑗 ) =
𝑒𝑥𝑝 (−| |𝒙𝑖−𝒙 𝑗 | |2/2𝜎2)∑
𝑘≠𝑙 𝑒𝑥𝑝 ( | |𝒙𝑘−𝒙𝑙 | |2/2𝜎2) . The algorithm then maps

those data points in the high dimensional space 𝒙∗ to 𝒚∗, which is
in a space with much lower dimensionality, R𝑛 . Suppose 𝒙𝑖 and
𝒙 𝑗 are projected into the lower dimension as 𝒚𝑖 and 𝒚 𝑗 . The prob-
ability that 𝒚𝑖 and 𝒚 𝑗 are still neighboring to each other is then

𝑞(𝒚𝑖 ,𝒚 𝑗 ) =
(1+| |𝒚𝑖−𝒚𝑗 | |2)−1∑

𝑘≠𝑙 (1+| |𝒚𝑘−𝒚𝑙 | |2)−1
. KL divergence measures the differ-

ence between two distributions, 𝑝 (∗) and 𝑞(∗). Minimizing it yields
the solution

𝐿𝑡𝑠𝑛𝑒 (𝒚 | |𝒙) =
∑
𝑖

∑
𝑗

𝑝 (𝒙𝑖 , 𝒙 𝑗 ) log
𝑝 (𝒙𝑖 , 𝒙 𝑗 )
𝑞(𝒚𝑖 ,𝒚 𝑗 )

(1)

Third, all the documents are stacked together to form a global
representation. It is denoted by C and its dimensions are 𝐶 × 𝐵 × 𝑛.
Here 𝐶 is the number of documents, 𝐵 is the number of segments
per document, and 𝑛 is the reduced feature dimension.

Fig. 1 illustrates the global representation of a toy corpus. In this
global representation C, each row represents a document and each
column represents a segment in this document. For generality, we
make no assumption about the stacking order of documents. It is
because the RL agent is expected to complete the search task even
when it is dealing with randomly ordered documents.

The states are constructed using this global representation. The
state at time 𝑡 , 𝒔𝑡 , consists of two parts: i) this corpus-level repre-
sentation C and ii) the retrieval history of documents from time 1
to 𝑡 − 1:

𝒔𝑡 = 𝑆 (C,D1 ∪ D2 ∪ ...D𝑖 ... ∪ D𝑡−1) (2)
where D𝑖 is the set of documents retrieved at time 𝑖 .

The action of the RL agent is the parameter of a differentiable
ranking function, which estimates the relevance of each document
at each time step:

𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 = 𝑓 (𝒂𝜽𝑡 , 𝑑𝑖 ) =
∑𝐵
𝑗=1𝒚𝑖 𝑗 · 𝒂𝜽𝑡 (3)

where 𝒂𝜽𝑡 is the sampled action and 𝒚𝑖 𝑗 is the feature vector of the
𝑗𝑡ℎ segment in 𝑑𝑖 after compression.

Our RL framework uses a state-of-the-art policy-gradientmethod,
Proximal Policy Optimization (PPO) [15]. The RL agent consists of
two networks, a value network and a policy network. PPO optimizes



Corpus Compression for Deep Reinforcement Learning in Natural Language Environments DRL4IR ’20, July 30, 2020, Virtual Event, China

Initialize 𝜽 ;
for iteration = 1, 2, ... do

for t=1,2, ... , T do
read in the global representation 𝒔𝑡 ;
sample action 𝒂𝜽𝑡 = 𝜋 (𝒔𝑡 , 𝜽𝑡 );
for i=1,2, ... , C do

estimate a relevance score for document 𝑑𝑖 :
𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 = 𝑓 (𝒂𝜽𝑡 , 𝑑𝑖 ) (Eq. 3)

end
rank the documents by 𝑠𝑐𝑜𝑟𝑒∗,𝑡 and return the
top-ranked documents D𝑡 ;
compute 𝑟𝑡 =

∑
𝑑𝑖 ∈D𝑡 \(D1∪D2∪...∪D𝑡−1) 𝑟𝑒𝑙 (𝑑𝑖 );

mark returned documents as visited, generate next
state 𝒔𝑡+1;
Compute advantage 𝐴𝑡 ;

end
Optimize 𝐿(𝜽 ) (Eq. 4) w.r.t. 𝜽 ;

end
Algorithm 1: CE3.

Topic (DD17-10) Leaning Towers of Pisa Repairs

Subtopic 1 (id: 321) Tourism impact of repairs/closing
Subtopic 2 (id: 319) Repairs and plans
Subtopic 3 (id: 320) Goals for future of the tower
Subtopic 4 (id: 318) Closing of tower

Table 1: Example Search Topic.

the following objective function with sampled trajectories.

𝐿(𝜽 ) = Ê𝑡 [𝐿𝑃𝑜𝑙𝑖𝑐𝑦𝑡 (𝜽 ) − 𝑐1𝐿
𝑉𝑎𝑙𝑢𝑒
𝑡 (𝜽 )] (4)

where 𝑐1 is coefficients. 𝐿𝑉𝑎𝑙𝑢𝑒𝑡 (𝜽 ) is the mean squared error be-
tween the estimated state value and the targeted state value. 𝐿𝑃𝑜𝑙𝑖𝑐𝑦
is a pessimistic bound of the effectiveness of policy network. It is de-
fined as 𝐿𝑃𝑜𝑙𝑖𝑐𝑦𝑡 (𝜽 ) = Ê𝑡 [min(𝜌𝑡 (𝜽 )𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝜌𝑡 (𝜽 ), 1−𝜖, 1+𝜖)𝐴𝑡 )].

Algorithm 1 describes the CE3 algorithm. It starts by sampling
actions by the RL agent. The documents are then ranked by their
estimated relevance scores calculated based on the action vectors.
The top-ranked ones are shown to the user. The user then examines
the documents and submits feedback, which is used to derive the
immediate reward 𝑟𝑡 . The algorithm employs stochastic gradient
ascent to optimize both the policy network and the value network.
The process continues until no better policy could be found.

4 EXPERIMENTAL SETTINGS
Our experiments are based on the TREC 2017 Dynamic Domain
Track. The TREC 2017 DD Track has the most complete set of
ground truth answers as compared to 2015 and 2016. The TREC 2017
DD Track used LDC New York Times collections [14] as its corpus.
The Track released 60 search tasks created by human assessors.
Each task consists of multiple hierarchically-organized subtopics.
The subtopics were not made available to the participating DS
systems. An example DD search topic DD17-10 is shown in Table
1. A simulated user1 issues a starting query, and then provides
1https://github.com/trec-dd/trec-dd-jig

Search DD17-10
User: Leaning Towers of Pisa Repairs
System: Return document 0290537
User: Non-relevant document.
System: Return document 0298897
User: Relevant on subtopic 320 with a rating of 2,

“No one doubts that it will collapse one
day unless preventive measures are taken.”

System: Return document 0984009
User: Relevant on subtopic 318 with a rating of 4,

“The 12th-century tower was closed to
tourists in 1990 for fear it might topple.”

Table 2: Example Interaction History.

feedback for all the subsequent runs of retrievals. The feedback
includes graded relevance judgments in the scale of 0 to 4, and
points out relevant passages for the documents. An example DD
interaction between the system and the user is shown in Table 2.

4.1 Metrics and Baselines
The evaluation focuses on gaining relevant information through-
out the whole process. We adopt multiple metrics to evaluate the
approaches from various perspectives. Aspect recall [5] measures
subtopic coverage. Precision and Recall are ratios of correctly
retrieved documents over the retrieved document set or the entire
correct set. Normalized Session Discounted Cumulative Gain
(nsDCG) evaluates the graded relevance for a ranked document
list, with heavier weights put on the early retrieved ones [4].

We compare CE3 with its variant CE3 (doc2vec), which uses
doc2vec to construct the compressed representation of each seg-
ment. Apart from that, we also compare with the most recent dy-
namic search systems from TREC DD 2017 submissions. We pick
the top submitted run from each team: Galago [2], which repeat-
edly retrieves document using the same query without using any
feedback; RF, a relevance feedback algorithm used by [13]; DIV,
a search result diversification algorithm used by [21]; and DQN,
which selects query reformulation actions at each time step [17].

4.2 Parameters
We construct a collection for each search topic by mixing relevant
documents and irrelevant documents at a ratio of 1:1. The corpus
size 𝐶 ranges from tens to thousands. The following configuration
yields the best performance: In the global representation C, 𝑛 is
set to 3, 𝐵 is set to 20. Coefficients 𝑐1 in Eq. 4 is 0.5. Both policy
network and value network are composed of two layers of CNNs
and one MLP. The first CNN consists of eight 2 × 2 kernels; while
the second consists of sixteen. The hidden layer of MLP consists of
32 units.

5 RESULTS ANALYSIS
CE3 v.s. CE3 (doc2vec): From Fig. 2, it comes to our attention that
CE3 and CE3 (doc2vec) show similar trends in all metrics, but the lat-
ter is left far behind by CE3. We then investigate if they are capable
of exploring different documents over time. We discover that CE3
retrieves much less duplicate documents than CE3 (doc2vec) does.
Table 3 reports |D𝑡∩(D1∪D2∪...∪D𝑡−1) |

|D𝑡 | , the percentage of duplicate
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Figure 2: Experiment results in the first 10 search iterations.

Time step t=1 t=2 t=3 t= 4 t=5 t=6 t=7 t=8 t=9 t=10

CE3 (doc2vec) 0.0% 11.7% 18.0% 30.0% 35.0% 34.3% 30.0% 25.0% 25.7% 25.0%
CE3 0.0% 3.0% 1.7% 1.0% 3.0% 0.0% 1.0% 0.3% 3.0% 0.0%

Table 3: Percentage of duplicate documents.

documents being retrieved, for the two CE3 variants. We believe
it is due to how they compress the feature vectors in a segment.
Doc2vec makes no assumption about the data distribution after
compression. Vectors trained by doc2vec are probably crowded
together and yield more duplicate results. On the contrary, t-SNE
helps CE3 separate relevant documents from the irrelevant ones,
which contributes to the success of CE3.

CE3 v.s. other baselines: Fig. 2 also shows that CE3 outper-
forms all others in recall (Fig. 2c) and aspect recall (Fig. 2d) at all
time. It suggests that our RL agent is able to explore more areas
in the action space than the rest. CE3 also performs quite impres-
sive in precision (Fig. 2b). As a search episode develops, all other
approaches show declined performance, except CE3 stays strong at
all iterations, which indicates that global representation makes the
exploration more effective. Moreover, results on nsDCG (Fig. 2a)
reveal that, although CE3 does not score as high as other methods
at beginning, CE3 largely outperforms the rest at the end of episode.
Those well-tuned ranking-sensitive retrieval functions seems not
to be able to adapt well when the number of interactions increases.

6 CONCLUSION
Using Dynamic Search (DS) as an example, this paper shows how
to represent an entire information space formed by free text docu-
ments to support deep reinforcement learning in natural language
environments. We propose to maintain a global representation of
entire corpus at all time. Corpus-level compression is achieved by
using dimension reduction via t-SNE. The experimental results
have demonstrated our method’s strong performance superior to
other state-of-the-art DS systems.
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